Geophysical Research Abstracts Vol. 12, EGU2010-7702-1, 2010 EGU General Assembly 2010 © Author(s) 2010

Reactions of HO2 Radicals with Organics at low NOx

Geoffrey Tyndall (1), John Orlando (1), Yongxin Tang (2), Alam Hasson (3), Sukhdip Singh (3), Yesenia Ibarra (3), Samuel Hernandez (3), Sean Campbell (3), Andre Silva Pimentel (4), and Maria Clara Leite Scaldaferri (4) (1) Atmospheric Chemistry Division, NCAR, Boulder, CO, United States, (2) Department of Chemistry, University of Virginia, Charlottesville, VA, United States, (3) Department of Chemistry, California State University, Fresno, CA, United States, (4) Department of Chemistry, Pontificia Universidade Católica do Rio de Janeiro, Brasil

Much of the focus on tropospheric peroxy radical chemistry has been in the high- NO_x regime, where ozone production occurs. However, there has recently been renewed interest in peroxy radical self reactions, which are assumed to occur mostly under conditions of low NO_x . In particular, the involvement of such reactions in the regeneration of OH in hydrocarbon rich environments has been inferred from a number of field studies. We will report on laboratory experiments designed to study the reactions of HO_2 radicals in the presence of atmospherically relevant carbonyl compounds. The studies involve both reactions of HO_2 with aldehydes, and also reactions of HO_2 with peroxy radicals derived from carbonyl compounds. It is found that OH is formed from the reactions of HO_2 with a number of peroxy radicals containing carbonyl functionalities adjacent to the carbonyl group.