Development of a Micro-scale Air Monitoring and Modeling System for a Urban District Air Quality Management

Seung Heon Yoo (1), Jung-Hun Woo (1), Rina Ryoo (1), BuJeon Jung (1), Jun Seong Seo (2), Jae-Jin Kim (3), Sang Boem Lim (1), and HyungSeok Kim (4)

(1) Department of Advanced Technology Fusion, Konkuk University, Seoul, Korea (shyoo23@gmail.com), (2) Department of Environmental Engineering, Konkuk University, Seoul, Korea, (3) Department of Environmental Atmospheric Science, Pukyoung National University, Busan, Korea, (4) Department of Internet & Multimedia Engineering, Konkuk University, Seoul, Korea

As the city is urbanized, its landscape is getting more complex due to the construction of high-rise buildings. The smaller scale wind-field in an urban district may change frequently due to the complex terrain, the diverse landuse, and high-rise buildings. It also leads to dynamic changes of air pollution in that area. The conventional urban scale air quality management system, however, is too coarse to effectively manage such a small area.

In this study, we set up a micro-scale air quality management testbed near Konkuk University, Seoul, Korea. A ubiquities sensor monitoring network, high resolution emission database, and CFD-based air quality modeling system were developed, and then applied to the testbed. A sensor data management system using wireless technology and multi-modal scientific visualization module were combined in support of the management system. The sensor based monitoring system shows reasonably good performance for wind speed, temperature, and carbon dioxide from inter-comparison study against conventional large format analyzers. The sensor data have been successfully collected using a wireless sensor data collection network during a 6 months operation period from July, 2009. The fire pollution event simulation using the CFD model reveals the effect of high rise buildings in the testbed.