

ALKALI-METASOMATISM AND PHYLLONITE DEVELOPMENT ALONG A MAJOR ALPINE SHEAR ZONE: THE EAST TENDA SHEAR ZONE (ALPINE CORSICA, FRANCE)

Matteo Maggi (1,2), Federico Rossetti (1), and Thomas Theye (3)

(1) Università degli Studi Roma Tre, Dipartimento di Scienze Geologiche, Roma, Italy (matteo.maggi@uniroma3.it), (2) Alma Mater Studiorum - Università di Bologna, (3) Institut für Mineralogie und Kristallchemie - Universität Stuttgart

Here we present results of an integrated study which combines structural geology, petrology and geochemistry addressed to assess modes and regimes of fluid-rock interaction during shear fabric development along the East Tenda Shear Zone (ETSZ), Haute Corse, France. This shear zone marks the overthrusting of the oceanic-derived Schistes Lustrés nappe onto the Hercynian granitic basement of the western Corsica. The granitic protolith (Casta Granodiorite) consists of K-feldspar, plagioclase, quartz and minor hornblende, and accessory apatite and zircon. A progressive, ductile-to-brittle top-to-the-W/SW shearing affects the Casta granodiorite, evolving from blueschist-facies (S-L tectonites) to upper crustal (brittle thrust faults) conditions. Apart the variably retrogressed mafic blueschist boudins, within the ETSZ two main rock types were recognised: weakly-foliated gneisses (hereafter referred as massive bodies) and phengite-dominated mylonites (hereafter referred as phyllonites). Both rock types consist of a high-variance mineral assemblage made up of feldspar (albite and K-feldspar) + quartz + phengite. Accessory minerals include relict zircons, and syn-kinematic andradite, epidote, monazite, leucoxene and titanite. At a regional scale, phyllonites envelop the massive bodies that, commonly, form sigma-shaped shear lenses wrapped within the mylonitic foliation. Phyllonites consist of alternating, micro-crystalline quartz-feldspar-phengite-bearing layers and by different generation of variably deformed quartz and composite quartz-feldspar (albite and microcline) vein segregations (up to 30 cm in thickness). Late-stage, laminated sub-horizontal quartz-feldspar vein arrays also occur, suggesting their origin as thrust-related shear veins. Microtextures are indicative of pseudomorphic growth of phengite after relict igneous K-feldspar. Nevertheless, new growth of microcline is ubiquitous along the rims of porphyroclastic K-feldspar grains. EMPA of phengite systematically revealed a high celadonitic substitution, ranging from 3.52 to 3.65 a.p.f.u. without any systematic core-rim zonation. $P-T$ pseudosections in the NKF_{MASHO} ($\text{Na}_2\text{O}-\text{K}_2\text{O}-\text{FeO}-\text{MgO}-\text{Al}_2\text{O}_3-\text{SiO}_2-\text{H}_2\text{O}-\text{O}_2$) for the $P-T$ range 250–600 °C and 1.5–9.5 kbar was computed using the Perple_X software (Connolly 2005; <http://www.perple.ethz.ch/>) for phyllonite bulk rock compositions. These calculations indicate that the phyllonite assemblage (quartz-microcline-albite-phengite-epidote) is stable in the 3–7 kbar pressure interval for temperatures between 250 and 450 °C, indicating $P-T$ conditions compatible with the low-grade greenschist facies field. Activity diagrams in the NKF_{MASH} ($\text{Na}_2\text{O}-\text{K}_2\text{O}-\text{FeO}-\text{MgO}-\text{Al}_2\text{O}_3-\text{SiO}_2-\text{H}_2\text{O}$) compositional system indicate that the phyllonite assemblage represents an invariant point, which argues for a rock-buffered fluid circulation system. Mass balance calculations comparing whole rock chemical composition of a progressively deformed rock sequence and assuming Al as immobile, documents a progressive gain in Si (up to 29%), Na and K (both up to 43%), a depletion in all other major elements, and a volume increase up to about 20%. This implies a strong alkaline metasomatism operated by the circulating fluids during phyllonite development. In this light, the matrix, highly substituted phengite compositions of phyllonites (i.e. not compatible with the overall greenschist-facies $P-T$ conditions) appear strongly influenced by the intense fluid-rock interaction during progress of shear deformation.