

Significant influence of the boreal summer monsoon flow on the Indian Ocean response during dipole events

Krishnan Raghavan (1) and Swapna Panickal ()

(1) Indian Institute of Tropical Meteorology, Pashan, NCL Post, Pune 411008, India (krish@tropmet.res.in), (2) Indian Institute of Tropical Meteorology, Pashan, NCL Post, Pune 411008, India (swapna@tropmet.res.in)

A majority of positive Indian Ocean Dipole (IOD) events in the last 50-years were accompanied by enhanced summer-monsoon circulation and above-normal precipitation over central-north India. Given that IODs peak during boreal-autumn following the summer-monsoon season, this study examines the role of the summer-monsoon flow on the Indian Ocean (IO) response using a suite of ocean model experiments and supplementary data-diagnostics. The present results indicate that if the summer-monsoon Hadley-type circulation strengthens during positive-IOD events, then the strong off-equatorial south-easterly winds over the northern flanks of the intensified Australian High can effectively promote upwelling in the south-eastern tropical Indian Ocean and amplify the zonal-gradient of the IO heat-content response. While it is noted that a strong-monsoon cross-equatorial flow by itself may not generate a dipole-like response, a strengthening (weakening) of monsoon easterlies to the south-of-equator during positive-IOD events tends to reinforce (hinder) the zonal-gradient of the upper-ocean heat-content response. The findings show that an intensification of monsoonal-winds during positive-IOD periods produces nonlinear amplification of easterly wind-stress anomalies to the south-of-equator due to the nonlinear dependence of wind-stress on wind-speed. It is noted that such an off-equatorial intensification of easterlies over SH enhances upwelling in the eastern IO off Sumatra-Java; and the thermocline shoaling provides a zonal pressure-gradient which drives anomalous eastward equatorial under-currents (EUC) in the sub-surface. Furthermore, the combination of positive-IOD and stronger-than-normal monsoonal flow favors intensification of shallow transient meridional-overturning circulation in the eastern IO; and enhances the feed of cold subsurface off-equatorial waters to the EUC.

References:

P. Swapna and R. Krishnan 2008: Geophy. Res. Lett. 35, L14S04, doi: 10.1029/2008GL033430

R. Krishnan and P. Swapna 2009: J. Climate, Vol 22, 5611 – 5634