



## What controls CO and H<sub>2</sub>O in the UTLS?

Peter Hoor (1) and Heini Wernli (2)

(1) Mainz University, Department of Atmospheric Physics, Mainz, Germany (hoor@uni-mainz.de), (2) Institute for Atmospheric and Climate Science, Swiss Federal Institute of Technology, ETH, Zürich, Switzerland

The upper troposphere/lower stratosphere (UTLS) of the extratropics is affected by frequent mixing events across the extratropical tropopause, in the region of the subtropical jet as well as air originating from the 'tropical controlled' transition layer above  $\Theta=380\text{K}$ . The distributions of CO and H<sub>2</sub>O have been extensively used to investigate transport and mixing across the extratropical tropopause and define the structure of the lowermost stratosphere – particularly the extratropical transition region (ExTL). Here, we investigate the distributions of CO and H<sub>2</sub>O in the extratropical UTLS and their relation to transport time and Lagrangian cold point temperature, respectively, using a statistical data set of 90-day backward trajectories driven by ERA interim windfields.

We show that the upper boundary of H<sub>2</sub>O in the lowermost stratosphere is under non-local control and driven by the annual temperature cycle at the (sub-)tropical tropopause. Using H<sub>2</sub>O ozone scatter plots from observations we show that the location of the ExTL upper boundary deduced from water vapour is controlled by the Brewer Dobson circulation, rather than transport across the tropopause in the extratropics. In contrast, CO isopleths tend to follow the local tropopause mirroring the transit time of air parcels having crossed the tropopause in the extratropics and subtropics. Thus, CO and H<sub>2</sub>O mirror complementary properties of transport and we discuss possible consequences for the definitions of transport regimes deduced from CO and H<sub>2</sub>O in the UTLS.