Denitrification activity of aquifer material from two different sandy aquifers in northern Germany measured by laboratory incubation experiments in relation to influencing sediment parameters

Wolfram Eschenbach (1), Reinhard Well (2), Heiner Flessa (2), Wilhelmu H.M. Duijnisveld (3), and Wolfgang Walther (4)

(1) Soil Science of Temperate and Boreal Ecosystems, Göttingen, Germany (weschen@gwdg.de), (2) Johann-Heinrich von Thünen-Institute, Institute of Agricultural Climate Research, Braunschweig, Germany, (3) Federal Institute for Geosciences and Natural Resources, Hannover, Germany, (4) Formerly with Institute for Groundwater Management, Dresden University of Technology, Germany

In NO$_3^-$ contaminated aquifers containing reduced compounds like organic carbon or sulfides, denitrification is an intense process. Its characterization is of interest because NO$_3^-$ consumption improves water quality and N$_2$O production can cause emission of this greenhouse gas to the atmosphere. Spatial distribution of NO$_3^-$ and N$_2$ produced by denitrification in groundwater (excess N$_2$) reflects the NO$_3^-$ input as well as cumulative denitrification during aquifer passage. The amount and spatial distribution of reduced compounds within denitrifying aquifers is not well known. Recent findings from parallel investigations on in situ denitrification and reactive compounds suggests that single-well 15N tracer tests might be suitable to characterize the stock of reduced compounds in aquifers (Konrad 2008), but an evaluation of this approach has not been realized until now.

The overall objective of our studies is to measure the spatial and long-term dynamics of denitrification within two sandy aquifers in northern Germany. This includes measurement of the actually occurring denitrification process in the field by 15N-tracer experiments and incubation experiments with corresponding aquifer material. Beside the comparison of field and laboratory data concerning the denitrification activity, we also want to determine the long-term denitrification potential which is governed by the stock of reactive material within these sediments.

Here we present the first results of these long-term incubation experiments to investigate the stock of reactive material present in these sediments and its denitrification activity. In these batch experiments we filled the aquifer material from different depths between two and 68 m below ground in glass bottles, supplemented it with K15NO$_3$ solution, sealed the bottles airtight with rubber septa and flushed the headspace with pure N$_2$. Afterward the bottles were stored in the dark by 10°C to obtain aquifer like conditions. The labeled denitrification products (15[N$_2$O+N$_2$]), N$_2$, N$_2$O, CO$_2$, Nitrate, Sulfate and pH were analyzed six times during the experiment. In order to study the stock of reduced compounds within the incubated sediments we also performed other laboratory measurements with the aquifer material. We measured its capability to reduce potassium permanganate and the concentrations of extractable sulfate, dissolved organic carbon, hot water soluble organic matter and total C, N and S per kilogram sediment.

Results up to now show for most of the incubated glass bottles with sediments an almost linear increase of the denitrification products over time. The measured denitrification rates for aquifer material from the zone of heterotrophic denitrification and for sediments from the zone of autotrophic denitrification range from 0.2 to 42 μg N kg$^{-1}$d$^{-1}$ and from 22 to 120 μg N kg$^{-1}$d$^{-1}$, respectively. The relationships between denitrification rates and the parameters of the reduced compounds will be discussed.

References: