Geophysical Research Abstracts Vol. 12, EGU2010-8822, 2010 EGU General Assembly 2010 © Author(s) 2010

Glaciovolcanism and episodic ice-sheets: evidence for paleo-climate proxies and insights into eruption dynamics from the Kawdy-Tuya area of northern British Columbia

Benjamin R Edwards (1), Chanone Ryane (2), James K Russell (2), Gregory K Lasher (1), and Gwen Dunnington (1)

(1) Department of Geology, Dickinson College, Carlisle, PA, USA (edwardsb@dickinson.edu), (2) Earth and Ocean Sciences, The University of British Columbia, Vancouver, BC, Canada

Constraints on pre-LGM ice-sheet positions and characteristics in North America have been hampered by the difficulty of identifying features that formed before the LGM and survived its immense erosive powers. Fortunately for paleo-climate reconstruction efforts in northwestern NA, sporadic volcanism accompanied the presence of ice over at least the last 2 Ma. Eruptions that were coincident with the presence of glaciovolcanic structures that withstood LGM erosion and that now preserve a record for pre-LGM ice presence, especially in northern British Columbia, Canada. Mathews (1947) first defined tuyas from the Kawdy-Tuya area in northern BC, and later workers (e.g. Gabrielse, 1970) defined the Tuya Formation as a formal, mappable, Pleistocene stratigraphic unit of volcanic deposits over this region. However, of the 40+ deposits mapped as Tuya Formation, up to one-third appear to have formed during subaerial eruptions. The presence of subaerial and glaciovoclanic deposits from the same volcanic field spanning 2 m.y. provides a unique opportunity to document major fluctuations in the Cordilleran ice sheet during the Pleistocene; Ar-Ar geochronology on glaciovolcanic deposits have already documented the presence of ice in the Kawdy area at \sim 1.8 Ma (Edwards, Singer and Jicha, unpub.) and in the Tuya area at \sim 740 ka (Edwards et al., in revision). Ongoing work will produce geochronologic constraints on 20-30 more subaerial and glaciovolcanic deposits over the next two years.

Recognizance and detailed fieldwork at 30+ volcanic centers in the Kawdy-Tuya area during 2009 documented a wide variety of features indicative of broader-scale and detailed constraints on glaciovolcanic processes, in part due to the variation in extent of erosion in the area. At least four distinctive glaciovolcanic landforms occur: 'classic' tuyas (e.g. Tuya Butte), compound tuyas (e.g. Tanker tuya), tindars (e.g. Caribou tindar), and compound glaciovolcanic cones (e.g. South Tuya). Each landform likely represents a different set of magmatic-ice conditions, potentially related to a combination of differing ice thicknesses and volumes of material erupted. Detailed observations that constrain more localized eruption-ice conditions include the presence of glacially-derived clasts as a component within dominantly volcaniclastic deposits; presumably ice-confined, steeply dipping, radially-jointed lava flows that locally directly overlie pillow lava; multiple passage zones with variable dips; and finer-grained, laminated sediments that may have formed by localized ponding of water on either small or possibly much larger spatial scales. Taken together, along with high precision Ar-Ar geochronometry, the glaciovolcanic deposits may provide the most detailed constraints on pre-LGM ice sheet presence in western North America yet documented.

References:

[1]Edwards, BR, Russell, JK, Simpson, K (in revision for Bull. Volc.) Physical and Chemical Evolution of Mathews Tuya, northern British Columbia, Canada: evidence for a pre-LGM Cordilleran icesheet, 32 manuscript pages, 11 figures, 2 tables.

[2]Gabrielse, H (1970) Geology of the Jennings River map-area, British Columbia (104-O): Geological Survey of Canada Paper 68-55, 37 p.

[3] Mathews, WH (1947) "Tuyas," flat-topped volcanoes in northern BC. Am J Sci 245, 560–570.