

Small-scale thermal and thermal-chemical convection in the Deep Mantle and Seismic Expression of Post-Perovskite Transition from Multiscale Analysis

David Yuen (1), Arie van den Berg (2), Maarten de Hoop (3), and Robert van der Hilst (4)

(1) University of Minnesota, Dept. Geology and Geophysics, Minneapolis, United States (daveyuen@gmail.com), (2) Utrecht University, Institute of Earth Sciences, Utrecht, Netherlands (berg@geo.uu.nl), (3) Purdue University, Dept. of Mathematics, West Lafayette, USA (mdehoop@math.purdue.edu), (4) M.I.T., Dept. of Earth and Planetary Sciences, USA (hilst@mit.edu)

There exist much 3D seismic heterogeneities at the base of the mantle, which may be attributed to post-perovskite (PPV) phase transition or chemical heterogeneities. To study the irregular seismic structure that may be caused by the undulations of the PPV phase boundary, we have carried out finite-element simulations with high local resolution in the D'' region, up to 3 km in both directions, in a cylindrical geometry, which includes the PPV transition and also the spinel to perovskite transition at 660 km depth. The mantle rheology employed has both Newtonian diffusion and non-Newtonian dislocation creep rheologies. The influence of a greater propensity of non-Newtonian creep for PPV is also investigated. From the temperature field, we can compute the 2D shear wave velocity field from a seismic equation of state. Using a curvelet transform we then decompose the seismic velocity fields into wave packets to account for the events-to-stations illumination and obtain the multiscale seismic expressions from the numerical simulations. The results reveal lens-shaped PPV structures, much similar to the patterns obtained from seismic imaging by van der Hilst et al. (2007). The lens structure shows sensitivity to the Clapeyron slope. Analysis of thermal-chemical anomalies from a subducting slab with crustal material shows a high sensitivity of the seismic expression near the CMB to the seismic velocity coefficients of the oceanic crust under high pressure conditions.