

Nitrogen availability in mountain spruce forest floor after forest defoliation

Karolina Tahovská (1), Jiří Kopáček (2), and Hana Šantrůčková (1)

(1) Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic (tahovska@centrum.cz), (2) Biology Centre ASCR, Institute of Hydrobiology, Na Sádkách 7, 370 05 České Budějovice, Czech Republic

Spruce forests in the Bohemian Forest Mountains (Czech Republic) have been endangered by bark beetle attack (*Ips typographus*) since the 1990s and, at present, a large area of the forest has already been affected. Many deforestation studies showed that nitrogen (N) leaching from soil increased after forest decline, however, it is still unclear whether lower N immobilization (by vegetation and microbes) or higher microbial N mineralization is the main mechanism affecting the change in N balance. The aim of our study was to evaluate whether lower N immobilization by spruce trees (*Picea abies*) or higher microbial N mineralization in the soil is the main mechanism changing the soil N balance after forest defoliation induced by bark beetle infestation. In the long term study we measured *in situ* mineral N availability (N-NH₄ and N-NO₃) using ion exchange resins, net N mineralization (Nmin, ammonification and nitrification), microbial carbon mineralization (Cmin) and N content in microbial biomass (Nmic) in the forest floor of bark beetle infested and control plots in an unmanaged area of The Bohemian Forest National Park. *In situ* N availability increased before the defoliation culminated (17 vs. 165 mg N m⁻²d⁻¹), which affirms the primary effect of reduced N immobilization by trees. N mineralization was significantly enhanced after maximum forest defoliation (2 vs. 30 µg N g⁻¹d⁻¹) due to high litter input with more favourable C:N ratio. The contribution of Nmin to *in situ* available N was supported by the correlations found between *in situ* mineral N availability and Nmin - to - Nmic and Nmin - to - Cmin ratios.