Multi-Isotopic Analysis Applied to Assess the Efficacy of Induced Denitrification: Laboratory and Field Scale Assays

Georgina Vidal (1,2), Neus Otero (1), Clara Torrentó (3), Albert Folch (4), Ana Mª Solanas (5), Jordi Cama (3), and Albert Soler (1)

(1) Universitat de Barcelona, Mineralogia Aplicada i Medi Ambient, Cristal·lografia, Mineralogia i Dipòsits Minerals, Barcelona, Spain (notero@ub.edu, +34934021345), (2) D’Enginy Biorem, C/ Madrazo 68, bxs. 08006 Barcelona, Spain., (3) Instituto de Diagnóstico Ambiental y Estudios del Agua. CSIC. C/ Jordi Girona, 18-26, 08034, Barcelona. Spain, (4) Unitat de Geodinàmica Externa i Hidrogeologia, Dept. de Geologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain, (5) Departament de Microbiologia. Facultat de Biologia. Universitat de Barcelona. Diagonal 645, 08028, Barcelona. Spain

Denitrification, the microbial transformation of NO\textsubscript{3}- to N\textsubscript{2}, is the most important reaction that attenuates nitrate pollution in groundwater. This process, that takes place in anaerobic environments, can be induced by the presence of organic matter and/or sulphide minerals. The study of induced attenuation of nitrate pollution has been performed at laboratory and field scale, using pyrite and organic matter as electron donors. A multi-isotopic approach (δ15N and δ18O of NO\textsubscript{3}-, δ34S and δ18O of SO\textsubscript{4}2-, δ13C of DIC) was performed in order to provide a tool to quantify the efficacy of induced attenuation.

Batch experiments using pyrite as electron donor were conducted. Contaminant destruction ranged from 67% to 82% after 94 days. Comparable denitrification efficiency was obtained in similar experiments but using pure culture of the denitrifying bacterium *Thiobacillus denitrificans*. The isotopic composition of dissolved nitrate (δ15N, δ18O) showed an inverse linear relationship with the ln [NO\textsubscript{3}-], allowing to calculate the enrichment factors. In both type of experiments, the ε\textsubscript{N} ranged from -15.0 to -27.6‰ and the ε\textsubscript{O} from -13.5 to -21.3‰ in the range of published data for groundwater and in vitro experiments (Lehmann et al. 2003). In a δ15N vs. δ18O diagram samples followed a denitrification trend with a ratio ε\textsubscript{N}/ε\textsubscript{O} between 1.13 and 1.30, slightly lower than the literature values (Fukada et al 2003, Böttcher et al., 1990). Regarding organic matter oxidation experiments, contaminant consumption was complete after 4 days. The enrichment factors obtained were similar to those obtained in the sulphide oxidation experiments, being the ε\textsubscript{N} = -26.4‰ the ε\textsubscript{O} = -23.5‰ and an ε\textsubscript{N}/ε\textsubscript{O} = 1.15.

Induced attenuation experiments using organic matter as the electron donor were also performed at field scale. The pilot test ran for 7 months in groundwater natural gradient conditions, and by regular addition of carbon source and phosphate. After an initial period of system set-up, nitrate levels were reduced to below detection levels. The calculated enrichment factors were ε\textsubscript{N} = -8.8‰ and ε\textsubscript{O} = -4.8‰ with a ratio ε\textsubscript{N}/ε\textsubscript{O} = 1.86. Although further research is needed, especially at field scale, enhanced and/or induced denitrification should be taken into account as a good alternative for groundwater remediation. The isotopic composition provides an excellent tool to monitor the efficacy of induced attenuation.

Acknowledgements

This work has been financed by CICYT CGL2008-06373-C03-01 and TRACE PET2008-0034 projects from the Spanish Government, 2009SGR103 project from the Catalan Government, RDITCINN07-1-0006 CIDEM project, and CT06001637 ACA project.

References:
