

Multi-Isotopic Analysis Applied to Assess the Efficacy of Induced Denitrification: Laboratory and Field Scale Assays

Georgina Vidal (1,2), Neus Otero (1), Clara Torrentó (3), Albert Folch (4), Ana M^a Solanas (5), Jordi Cama (3), and Albert Soler (1)

(1) Universitat de Barcelona, Mineralogia Aplicada i Medi Ambient, Cristal·lografia, Mineralogia i Dipòsits Minerals, Barcelona, Spain (notero@ub.edu, +34934021345), (2) D'Enginy Biorem, C/ Madrazo 68, bxs. 08006 Barcelona, Spain., (3) Instituto de Diagnóstico Ambiental y Estudios del Agua. CSIC. C/ Jordi Girona, 18-26, 08034, Barcelona. Spain, (4) Unitat de Geodinàmica Externa i Hidrogeologia, Dept. de Geologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain, (5) Departament de Microbiologia. Facultat de Biologia. Universitat de Barcelona. Diagonal 645, 08028, Barcelona. Spain

Denitrification, the microbial transformation of NO_3^- to N_2 , is the most important reaction that attenuates nitrate pollution in groundwater. This process, that takes place in anaerobic environments, can be induced by the presence of organic matter and/or sulphide minerals. The study of induced attenuation of nitrate pollution has been performed at laboratory and field scale, using pyrite and organic matter as electron donors. A multi-isotopic approach ($\delta^{15}\text{N}$ and $\delta^{18}\text{O}$ of NO_3^- , $\delta^{34}\text{S}$ and $\delta^{18}\text{O}$ of SO_4^{2-} , $\delta^{13}\text{C}$ of DIC) was performed in order to provide a tool to quantify the efficacy of induced attenuation.

Batch experiments using pyrite as electron donor were conducted. Contaminant destruction ranged from 67% to 82% after 94 days. Comparable denitrification efficiency was obtained in similar experiments but using pure culture of the denitrifying bacterium *Thiobacillus denitrificans*. The isotopic composition of dissolved nitrate ($\delta^{15}\text{N}$, $\delta^{18}\text{O}$) showed an inverse linear relationship with the $\ln [\text{NO}_3^-]$, allowing to calculate the enrichment factors. In both type of experiments, the εN ranged from -15.0 to -27.6‰ and the εO from -13.5 to -21.3‰ in the range of published data for groundwater and in vitro experiments (Lehmann et al. 2003). In a $\delta^{15}\text{N}$ vs. $\delta^{18}\text{O}$ diagram samples followed a denitrification trend with a ratio $\varepsilon\text{N}/\varepsilon\text{O}$ between 1.13 and 1.30, slightly lower than the literature values (Fukada et al 2003, Böttcher et al., 1990). Regarding organic matter oxidation experiments, contaminant consumption was complete after 4 days. The enrichment factors obtained were similar to those obtained in the sulphide oxidation experiments, being the $\varepsilon\text{N} = -26.4\text{‰}$ the $\varepsilon\text{O} = -23.5\text{‰}$ and an $\varepsilon\text{N}/\varepsilon\text{O} = 1.15$.

Induced attenuation experiments using organic matter as the electron donor were also performed at field scale. The pilot test ran for 7 months in groundwater natural gradient conditions, and by regular addition of carbon source and phosphate. After an initial period of system set-up, nitrate levels were reduced to below detection levels. The calculated enrichment factors were $\varepsilon\text{N} = -8.8\text{‰}$ and $\varepsilon\text{O} = -4.8\text{‰}$ with a ratio $\varepsilon\text{N}/\varepsilon\text{O} = 1.86$. Although further research is needed, especially at field scale, enhanced and/or induced denitrification should be taken into account as a good alternative for groundwater remediation. The isotopic composition provides an excellent tool to monitor the efficacy of induced attenuation.

Acknowledgements

This work has been financed by CICYT CGL2008-06373-C03-01 and TRACE PET2008-0034 projects from the Spanish Government, 2009SGR103 project from the Catalan Government, RDITCINN07-1-0006 CIDEM project, and CT06001637 ACA project.

References:

Böttcher, J., Strelbel, O., Voerkelius, S., Schmidt, H.-L., 1990. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in sandy aquifer. *J. Hydrol.* 114, 413-424.

Fukada, T., Hiscock, K., Dennis, P.F., Grischek, T., 2003. A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site. *Water Res.* 37, 3070–3078.

Lehman M.F., Reichert, P., Bernasconi, S.M., Barbieri A., Mckenzie, J.A., 2003. Modeling nitrogen and oxygen isotope fractionation during denitrification in a lacustrine redox-transition zone. *Geochim. Cosmochim. Acta* 67, 2529–2542.