The ionosphere is a part of coupled Earth’s atmospheric system significantly influenced by solar and magnetospheric processes from above and by upward propagating disturbances from below. The coupling processes are crucial to our understanding of space weather impact on patterns of the atmospheric variability and human technologies. The basic source of most of significant ionosphere disturbances is well-developed magnetic storms, but many others do exist. The ionosphere is also forced from below mainly (but not only) by atmospheric waves like planetary, tidal and gravity waves, those being mostly of tropospheric origin but partly excited also in the stratosphere and at higher layers.
The symposium invites observational, simulation and modelling studies that address the magnetospheric and lower atmospheric forcing and the associated feedback on ionospheric dynamics with emphasis on magnetosphere-ionosphere coupling under severe magnetic storm conditions and on severe tropospheric convection effects on ionosphere.
Contributions dealing with magnetospheric forcing are sought particularly in the areas of ionospheric phenomena caused by magnetospheric storms and substorms, current closure, the deposition of energy in its various forms, and the interaction of electromagnetic waves with the ionosphere. New results that focus on the fully three-dimensional ionospheric structure of the above mentioned phenomena are especially appreciated. As for atmospheric forcing, contributions are sought that focus on atmospheric waves, wave-wave and wave-mean flow interactions, atmospheric electricity and electrodynamical coupling processes. New results on MLT feeding (wave penetration and secondary wave generation) of ionospheric disturbances and the solar effect on the vertical propagation conditions of the atmospheric waves are particularly welcome.