

CARIBIC flights in the chemical transport model Oslo CTM2

Ole Amund Søvde (1), Tanja Schuck (2), Carl Brenninkmeijer (2), Helmut Ziereis (3), Andreas Zahn (4), Ivar S. A. Isaksen (1,5)

(1) Center for International Climate and Environmental Research – Oslo, (CICERO), Norway (asovde@cicero.uio.no), (2) Max Planck Institute for Chemistry, Department of Atmospheric Chemistry, Mainz, Germany, (3) German Aerospace Center, Institute of Atmospheric Physics, Germany, (4) Karlsruhe Institut für Technologie, IMK-ASF, Germany, (5) Department of Geosciences, University of Oslo, Norway

The CARIBIC flights of 2005 have been simulated by the global chemical transport model Oslo CTM2, and the results are presented here, covering ozone, CO, NO and NO_y. In general ozone is well modelled. CO, NO and NO_y depends more on emissions, and deviate more from observations since we use emissions for the year 2000. In addition NO and NO_y may be difficult to model due to convective and large scale rain and clouds, scavenging HNO₃ and affecting photochemistry. We show that the Oslo CTM2 in general performs well.