

Detection of hydrological changes in Blue Nile Basin, Ethiopia: a modeling approach

Solomon Gebreyohannis Gebrehiwot, Kevin Bishop, Annemieke Gärdenas, Jan Siebert, and Per-Erik Mellander
Swedish University of Agricultural Sciences, Aquatic Sciences and Assessment, Uppsala, Sweden
(solomon.gebreyohannis@vatten.slu.se)

Detection of hydrological changes in Blue Nile Basin, Ethiopia: a modeling approach

1Solomon Gebreyohannis Gebrehiwot, 1,5Kevin Bishop, 2Annmieke Gardenas, 3Jan Siebert, 4Per-Erik Mellander

1Department of Aquatic Sciences and Assessment, SLU, Box 7050, 750 07 Uppsala;

2Department of Soil and Environment, SLU, Box 7014, 750 07 Uppsala;

3Department of Geography, University of Zurich – Irchel, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland;

4Research Officer, Agricultural Mini-Catchment Programme, Teagasc, Johnstown Castle Environmental Research Centre, Co. Wexford, Ireland

5 Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala

Abstract

A hydrological modeling approach was used to detect changes in the hydrological regime of 5 rivers in the Blue Nile Basin of Ethiopia between 1960 and 2005. Daily meteorological and hydrological data were used. The whole time series classified into three periods based on major land management changes in the country; from 1960 to 1975, from 1976 to 1990 and from 1991 to 2004. Generalized Likelihood Uncertainty Estimation (GLUE) was used to calibrate the best parameter sets for each river in each period. The tests for detecting change were based on the 50 best model calibration for each river to each of three 15 year periods in the time series. Distribution of model parameter sets between different times-steps was compared. Model residuals from the different periods were also compared. Finally the predicted outputs of the model when the same time series of input data for a very dry or very wet year is used as input to the parameterized model for each of the 3 periods was examined. The modeling showed that soil moisture parameters were decreased significantly over the half decade of record, while subsurface flow parameters increased. These results implied that water is flowing faster from the catchments in recent years, leaving them to dry out more in the dry season. This increases the possibility of water shortage problems in the basin. These findings are contrasted with those of a more traditional statistical analysis of flow records which did not detect consistent changes in the flow regime, such as those found using model-based change detection.

Mail: solomon.gebreyohannis@slu.se