

Whistler-mode Waves and Non-Adiabatic Electrons in Plasma Jet Braking

Yuri Khotyaintsev (1), Christopher Cully (1), Andris Vaivads (1), Mats André (1), and Christopher J. Owen (2)

(1) Swedish Institute of Space Physics, Uppsala, Sweden (yuri@irfu.se, +46 18 4715905), (2) Mullard Space Science Laboratory, University College London, Dorking, UK

We report in situ observations by the Cluster spacecraft in the Earth's magnetotail of wave particle interactions in the magnetic flux pile-up region created by a magnetic reconnection outflow jet. Two distinct regions of wave activity are identified: lower-hybrid drift waves at the front edge and whistler-mode waves inside the pile-up region. The whistler-mode waves are locally generated by the electron temperature anisotropy, and provide evidence for ongoing betatron energization caused by the magnetic flux pile-up. The whistler-mode waves cause fast pitch-angle scattering of electrons and isotropisation of the electron distribution, thus making the flow braking process non-adiabatic. The waves strongly affect the electron dynamics and thus play an important role in the energy conversion chain during plasma jet braking.