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At collision zones, the effect of slab break-off on the production of surface uplift and volcanism is debated.
Previous modelling work has led to various different conclusions. Gerya et al. (2004) suggest a rapid changes in
topography and significant volcanic activity as possible consequences of slab detachment, and predict topography
changes of about 1400m after slab break-off. Surface up-lift has also been modelled by Buiter et al. (2002),
and they predicted uplift of the order of 2-6km with large variation being due to difference in the depth of slab
break off and friction in the subduction zone fault. Andrews & Billen (2009) show that the timing and to some
extent magnitude of surface effects where closely correlated with the rheology of the subducted plate. It has also
been proposed that as a slab tears away there will be a zone of depression that propagates across the surface
(Meulenkamp et al., 1996; van der Meulen et al. 1998; Wortel & Spakman, 2000). This zone is proposed to be due
to the mass of the detached section all being supported by the plate at the point where it is still attached. Mantle
flow will have additional dynamic topography effects (Faccenna & Becker, 2010). To fully understand how each
of these processes affects topography, , we compare results from numerical dynamical models with available
observations from the Zagros mountains (Molinaro et al., 2005) and the European Alps.

To investigate how the topography at collision zone changes over time we numerically simulate collisional
tectonics (van Hunen & Allen, 2010). We investigate topography evolution using both idealised and full sub-
duction and collision models. These have been used to investigate the effects of the mantle viscosity has on the
topography produced when collision occurs. The size, orientation and composition of the subducted slab is also
varied to see what effect this has on topography. Preliminary results indicate a significant influence of mantle flow
during the break-off process. Finally, we will discuss whether a topographic slab detachment signal would be lost
as noise in the large orogenic surface uplift associated with continental collision.
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