

Crustal CO₂ liberation at Merapi volcano, Indonesia: an earthquake trigger?

Valentin Troll (1), David R. Hilton (2), Jane P. Chadwick (3), Ester M. Jolis (1), Martin Zimmer (4), Lara S. Blythe (1), and Frances M. Deegan (1)

(1) Dept. of Earth Sciences, CEMPEG, Uppsala University, Sweden, (2) Geosciences Research Division, Scripps Institution of Oceanography, La Jolla, California, USA, (3) Dept of Petrology (FALW), De Boelelaan 1085, Amsterdam, The Netherlands, (4) GeoForschungsZentrum, Am Telegrafenberg, Potsdam, Germany

High-temperature volcanic gas is widely considered to originate from ascending, mantle-derived magma. In the case of CO₂ at arc-related volcanoes, its provenance is thought to be predominantly from the mantle wedge and subducted sediments from the down-going slab [1, 2]. Our investigation focuses on the carbon isotope composition ($\delta^{13}\text{C}$) of CO₂ emitted via high-T summit fumaroles ($>230^\circ\text{C}$) from Merapi volcano, Central Java.

On May 26th, 2006, the magnitude 6.4 Yogyakarta earthquake occurred along a splay of the Opak River Fault system, with hypocentres at 10-15km depth [3, 4]. Prior to 2006, variation of fumarole carbon isotope ratios was limited ($r\delta^{13}\text{C}_{2001-2004} = 0.5\text{\textperthousand} \pm 0.3\text{l}$) with an average baseline value of $-4.1\text{\textperthousand} \pm 0.2$ (vs, PDB). This value is typical of subduction zones [2]. Carbon dioxide collected after the earthquake showed a dramatic increase from the baseline to $\delta^{13}\text{C} = -2.4\text{\textperthousand}$. In 2007 and 2008, $\delta^{13}\text{C}$ values returned to background levels. This rise coincided with an increase in eruptive intensity and volcano seismicity by a factor of 3-5 for several weeks after the earthquake [3, 4].

High carbon isotope gas values, such as those observed in 2006, are not produced by decompression- or fractionation induced degassing in either open or closed system mode [5], suggesting an addition of CO₂ from a non-magmatic, high- $\delta^{13}\text{C}$ source [2]. The increase in $\delta^{13}\text{C}$ in 2006, its transient duration, the crustal depth of the earthquake hypocentres, and the link with eruptive and seismic intensity are all consistent with addition of CO₂ from mid- to upper-crustal depths. Such additions of crustal CO₂ to subduction zone baseline fluxes may modify volatile budgets of ascending magmas at Merapi considerably [6, 7]. Therefore, CO₂ liberation from long-term crustal storage reservoirs, such as the thick limestone basement underneath Merapi, may be a process that is triggered and/or amplified by external mechanisms such as seismic events. We thus envisage a chain of events whereby earthquake and volcano interact in a positive feedback loop. We conclude that crustal volatiles intensify ongoing eruptions and that late-stage volatile addition may potentially trigger explosive eruptions independently of magmatic recharge and fractionation processes and may even be a key factor in promoting regional seismic activity.

[1] Sano, Y. & Marty, B., *Chem. Geol.*, 119, 265-274 (1995); [2] Hilton, D. R., Fischer, T. P., & Marty, B., *Rev. Mineral. Geochem.*, 47, p. 319-370 (2002); [3] Walter, T. R., Wang, R., et al., *Geoph. Res. Lett.*, 34, 1-5 (2007); [4] Walter, T. R., Wang, R., et al., *Geoch. Geoph. Geos.*, 9, 1-9 (2008); [5] Holloway J. R. & Blank J. G. *Rev. Mineral. Geochem.*, 30, 187-230 (1994); [6] Chadwick, J. P., Troll, V.R., et al., *J. Petrol.*, 48, 1793-1812 (2007); [7] Deegan, F. M., Troll, V. R., et al., *J. Petrol.*, 51, 1027-1051 (2010).