

Analysis of biomolecules and microbial transformation products in gas field formation waters and in laboratory experiments simulating geological storage of carbon dioxide

Andrea Kassahun (1), Thomas Muschalle (2), Claudia Gniese (3), and Nils Hoth (2)

(1) Dresden Groundwater Research Centre DGFZ e.V., Dresden, Germany (akassahun@dgfz.de), (2) Institute of Drilling and Fluid Mining, TU Bergakademie Freiberg, Germany, (3) Institute of Biosciences, TU Bergakademie Freiberg, Germany

RECOBIO-2, part of the BMBF-Geotechnologien-funded research area on technologies for a sustainable storage of carbon dioxide in geological formations, investigates the presence of microbes in potential CO₂ storage units and the effects of microbial activity on geological CO₂ storage unit properties. Formation water was sampled from two natural gas field sites (Schneeren and Altmark; both operated by GDF SUEZ E&P Germany GmbH). Rock material was obtained from exploration drilling cores of both gas fields (GDF archives).

For both gas fields, molecular biological analysis revealed the presence of microorganisms, among which autotrophic bacteria and archaea, able to transfer CO₂ into organic carbon (Ehinger et al., 2009; Gniese et al., 2010). Formation fluids contain dissolved organic carbon in the range of 70 to 150 mg/l (occasional up to 1 g/l), dissolved inorganic carbon (several tenths mg/l in Schneeren and several hundred mg/l in Altmark gas field) and dissolved hydrogen (up to 3 µmol/l in Schneeren and up to 0.1 mmol/l in Altmark gas field). Up to 50 % of the total dissolved organic carbon was identified and qualified by single compound analysis. It comprises carbonic acids (mostly formic and acetic acid), alcohols (methanol, ethanol), methane, amino acids (free and in peptide bonds) and sugars (polysaccharides). Furthermore, formation water ethylacetate extracts contain elemental sulphur, linear and branched alkanes, dicarboxylic acids and fatty acids.

To reveal possible autotrophic microbial CO₂ turnover processes, autoclave experiments at elevated pressure and temperature conditions using microbial active formation fluids, milled formation rock materials and mixed N₂-CO₂-H₂-gas phases were conducted (Muschalle et al.,). The experiments with Schneeren field site materials showed a considerable CO₂ consumption accompanied with a rise in DOC-concentrations of the fluid phase from 70 mg/l to 2.7 g/l. Carbonic acids and alcohols were present in the same proportion like in the formation waters prior to incubation. Accordingly, the content of elemental sulphur, linear alkanes and fatty acids in the ethylacetate extracts of the fluid phase increased. At some sampling dates, sugar and amino acid concentrations of several tenths mg/l were detected. After the experiments, the incubated rock material was analyzed for proteins and polysaccharides using fluorescence microscopy. Protein covers of particle surfaces developed during incubation and were visualized by DTFA staining. Associated to protein films, polysaccharide and calcium accumulations were detected using calcofluor white and calcein stains. Interestingly, no carbonates could be extracted from the incubated rock material using sequential extraction techniques. This fact strengthens the hypothesis of autotrophic microbial CO₂ turnover into organic material during geological CO₂ storage.

Ehinger, S., Seifert, J., Kassahun, A., Schmalz, L., Hoth, N., Schlömann, M. (2009): Predominance of *methanolobus* spp. and *methanoculleus* spp. in the archaeal communities of saline gas field formation fluids, *Geomicrobiology*, 26, 326-338

Gniese, C., Hoth, N., Krüger, M., Frerichs, J., Kassahun, A., Seifert, J., Schlömann, M. (2010): Analysis of active microorganisms in the natural gas reservoir Altmark (Germany) and their potential role in CO₂ turnover, *BIOspektrum Sonderausgabe 2010 VAAM Jahrestagung* (Poster)

Muschalle, T., Gniese, C., Kassahun, A., Krüger, M., Hoth, N. (2011): Autoclave experiments on autotrophic metabolism under elevated pressure and temperature by microbes from a mature german natural gas field, Poster EGU 2011, this volume