

Space-based observations of NH₃: spatial patterns, seasonal trends and in situ evaluation

Rob Pinder (1), John Walker (1), Jesse Bash (1), Karen Cady-Pereira (2), Daven Henze (3), Ming Luo (4), Greg Osterman (4), and Mark Shephard (5)

(1) US Environmental Protection Agency, Office of Research and Development, (2) Atmospheric and Environmental Research, Inc., (3) University of Colorado, Boulder, (4) Jet Propulsion Laboratory, (5) Environment Canada

Ammonia plays an important role in many biogeochemical processes, yet atmospheric mixing ratios are not well known. Recently, methods have been developed for retrieving NH₃ from space-based observations, but they have not been compared to in situ measurements. We have conducted a field campaign combining co-located surface measurements and satellite special observations from the Tropospheric Emission Spectrometer (TES). Our study includes 25 surface monitoring sites spanning 350 km across eastern North Carolina, a region with large seasonal and spatial variability in NH₃. From the TES spectra, we retrieve a NH₃ representative volume mixing ratio (RVMR), and we restrict our analysis to times when the region of the atmosphere observed by TES is representative of the surface measurement. We find that the TES NH₃ RVMR qualitatively captures the seasonal and spatial variability found in eastern North Carolina. Both surface measurements and TES NH₃ show a strong correspondence with the number of livestock facilities within 10 km of the observation. Furthermore, we find that TES NH₃ RVMR captures the month-to-month variability present in the surface observations. The high correspondence with in situ measurements and vast spatial coverage make TES NH₃ RVMR a valuable tool for understanding regional and global NH₃ fluxes. Accordingly, we use TES global survey observations from 2006-2009 to examine seasonal patterns in NH₃ for world regions.