

Consistency of observed sea level pressure trends with climate change projections over the Mediterranean area

Armineh Barkhordarian and Hans von Storch

Institute for Coastal Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
(armineh.barkhordarian@hzg.de),

We examine the possibility that anthropogenic forcing (Greenhouse gases and sulphate aerosols, GS) is a plausible explanation for the recently observed mean sea level pressure trends over the Mediterranean area. To this aim observed annual and seasonal trends in mean sea level pressure (SLP) over the time period from 1974 to 2004 are compared with the response to anthropogenic forcing estimated from 16 global coupled atmosphere-ocean general circulation models derived from CMIP3 database and from a set of regional model simulations from CIRCE project. For the trend detection assessment, we compare the observed trend with estimates of natural variability derived from the observed record using a moving block bootstrap technique, to account for autocorrelation. The same estimate of natural (internal) variability is used to assess whether GS forcing is consistent with the observed trend taking into account that internal variability and other external forcing influence the observed record. We analysis different seasons separately and present results for 20 models individually.

Results indicate that the observed seasonal changes in SLP are very likely not drawn from an undisturbed stationary climate and there is less than an 8% chance that natural (internal) variability is responsible for the observed seasonal mean sea level pressure trends. Further, the detection of externally forced changes in the observed SLP trends over the Mediterranean is robust to using model-based estimate of internal variability. Using two pattern similarity statistics, centred and un-centred regression indices, we find that the large-scale component (spatial-mean) of the GS signal is detectable (at 5% level) in all seasons except in autumn. However, the small-scale component (spatial anomalies about the spatial mean) of GS signal is detectable only with 8 models in winter (at 8% level) and 15 models in spring (at 5% level).

Further, we find that the recent trends are significantly (at 8% level) consistent with all the GS patterns used in this study, except in summer when 3 models and in spring 1 model significantly underestimate the observed SLP trends. Thus, we conclude that GS forcing is a plausible explanation for the observed seasonal SLP trends in the Mediterranean region except in autumn when observation contradicts the projections.