

The Indian shield from the upper crust to the lower mantle: boundary layers and the fast drift

Lev Vinnik (1), Sergei Oreshin (1), Sergei Kiselev (1), Shyam Rai (2), Kudumu Suryaprakasam (2), and Alexandre Treussov (1)

(1) Institute of Physics of the Earth, Moscow, Russia (vinnik@ifz.ru), (2) National Geophysical Research Institute, Hyderabad, India

The Indian shield of the Archean and Early Proterozoic age after the dispersal of Gondwana drifted to the North with a speed reaching 20 cm/year between 80 Myr and 55 Myr. Negi et al. (1986) argued that the mobility of the Indian subcontinent in the Mesozoic was facilitated by a thin (several tens kilometers) lithosphere. Kumar et al. (2007) published for the Indian shield an upper mantle model with the LAB at a depth of 100 km and the S velocity reduction of more than 10% in the LVZ under the LAB. In our work P and S receiver functions from seismograph stations in India are inverted jointly with teleseismic travel time residual and provide a 2500-km cross-section of the crust and mantle between 75 and 80 degrees E. The mantle S velocity at depth less than 180 km is close to 4.5 km/s and never reaches 4.7 km/s, characteristic of the old shields. In our models there is neither the LAB at a depth of 100 km nor the LVZ with a significantly reduced S velocity, but the waveforms of the P410s and S410p seismic phases are indicative of a thin (a few tens kilometers) low velocity layer atop the 410-km discontinuity.

Studies of kimberlite pipes in central India indicate a mantle source extending in the diamond stability field at depths of more than 140 km. The pipes originated at 65 Myr with implication that the high-velocity mantle root of the Indian shield existed at least up to that time. It is likely that a metasomatic alteration of the uppermost mantle in India is young (Tertiary?) and inflicted by subduction-related fluids. In the heat-flow data there are no indications of this process. We cannot confirm the idea of a thin Indian lithosphere as a reason for its fast drift in the Mesozoic, because in the seismic data there is no robust marker for the lithosphere-asthenosphere boundary, and there is no evidence that the state of the Indian upper mantle in the Cretaceous was similar to the present state. Moreover, the upper-mantle velocities in the northern Greater India, buried in the Himalaya and Tibet are in a shield range. This means that the initial properties of the Indian shield beneath the Himalaya and Tibet are preserved better than in the rest of India. The depleted high-velocity upper mantle is less dense than its fertile counterpart, and this may explain why the high-velocity lithosphere was not subducted in the course of the continental collision. Another important effect revealed by our data is a pronounced difference in the crustal velocities of the Indian Shield and the Himalaya/Tibet.