

Operational O3M-SAF trace gas column products: GOME-2 NO₂, BrO, SO₂, CH₂O, and H₂O

Pieter Valks (1), Nan Hao (1), Isabelle De Smedt (2), Steffen Beirle (3), Gaia Pinardi (2), Jean Christophe Lambert (2), Diego Loyola (1), Kornelia Mie (3), Meike Rix (1), and Niilo Kalakoski (4)

(1) German Aerospace Center, Remote Sensing Technology Institute, Wessling, Germany (pieter.valks@dlr.de), (2) Belgian Institute for Space Aeronomy (BIRA-IASB), (3) Max Planck Institute for Chemistry, (4) Finnish Meteorological Institute (FMI)

This contribution focuses on the operational GOME-2 trace gas column products developed in the framework of EUMETSAT's Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M-SAF). We present an overview of the retrieval algorithms and exemplary results for NO₂, BrO, SO₂, CH₂O and H₂O. These trace gas column products are retrieved from GOME-2 solar backscattered measurements in the UV and VIS wavelength regions, and are generated operationally by DLR using the GOME Data Processor (GDP) version 4.4.

Total and tropospheric NO₂ is retrieved with the Differential Optical Absorption Spectroscopy (DOAS) method in the 425-450 nm wavelength region. The GOME-2 NO₂ product is available for the users in near real time, i.e. within two hours after sensing. SO₂ emissions from volcanic and anthropogenic sources can be measured by GOME-2 using the UV wavelength region around 320 nm. For BrO and CH₂O, optimal DOAS fitting windows have been determined for GOME-2 in the UV wavelength region. H₂O columns are retrieved with the classical DOAS retrieval in the visible spectral range. The GOME-2 SO₂, BrO, CH₂O and H₂O products have reached the operational O3M-SAF status, and are routinely available to the users.

More than four years of operational trace gas column measurements are now available from GOME-2. We present validation results using ground-based measurements, as well as comparisons with other satellite products, such as those from SCIAMACHY and OMI. The use of tropospheric NO₂ and CH₂O columns for air quality applications will be presented, and we will show examples of SO₂ measurements from volcanic eruptions and anthropogenic emissions. Finally, exemplary GOME-2 measurements of H₂O will be shown.