

Calibrating GNSS VTEC Values by Satellite altimetry and Formosat-3/COSMIC Data using Parameter Estimation Technique

M. Mahdi Alizadeh (1), Harald Schuh (1), Michael Schmidt (2), Manuel Hernandez-Pajares (3), and Angela Aragon-Angel (3)

(1) Institute of Geodesy and Geophysics, Vienna University of Technology, Vienna, Austria (alizadeh@mars.hg.tuwien.ac.at),
(2) Deutsches Geodätisches Forschungsinstitut (DGFI), Munich, Germany, (3) Research Group of Astronomy and Geomatics, Universitat Politecnica de Catalunya (UPC), Barcelona, Spain

The classical input data for development of Global Ionosphere Maps (GIM) of the Vertical Total Electron Content (VTEC) is obtained from the dual-frequency Global Navigation Satellite Systems (GNSS) ground-based observations. Nevertheless due to the fact that the GNSS ground stations are inhomogeneously distributed with poor coverage over the oceans (namely southern Pacific and southern Atlantic), and also parts of Africa, the precision of VTEC maps are rather low in these areas. From long term analyses it is believed that the International GNSS Service (IGS) VTEC maps have an accuracy of 1-2 TECU in areas well covered with GNSS receivers; conversely, in areas with poor coverage the accuracy can be degraded by a factor of up to five. On the other hand dual-frequency satellite altimetry missions (such as Jason-1&2) provide direct VTEC values exactly over the oceans, and furthermore the six Formosat-3/COSMIC (F/C) spacecraft provide about 2500 globally distributed occultation measurements per day, which can be used for obtaining VTEC values. Combining these data with the ground-based data improves the accuracy and reliability of the VTEC maps by closing of observation gaps that arise when using ground-based data only. In this approach an essential step is the evaluation and calibration of the different data sources used for the combination procedure.

This paper studies the compatibility of calibrated TEC observables derived from GNSS dual-frequency data, recorded at global ground-based station networks, with space-based TEC values from satellite altimetry and F/C observations. In the current procedure the ground-based GNSS observations have been firstly used for developing the GNSS-only GIMs using the parameter estimation technique. The VTEC values extracted from these models have been quantified and calibrated with the raw altimetry and F/C measurements. The calibrated values have been consequently used for developing the combined GIMs of the VTEC.