

Unit-cell data and XRD compositional indicators for fluorapatite-chlorapatite crystalline solutions

Guy Hovis (1), Daniel Harlov (2), Matthias Gottschalk (2), and Georg Schettler (3)

(1) Department of Geology and Environmental Geosciences, Lafayette College, Easton, Pennsylvania 18042, United States (hovisguy@lafayette.edu), (2) Department Chemistry and Physics of Earth Materials, Deutsches GeoForschungsZentrum, Telegrafenberg, D-14473 Potsdam, DE (dharlov@gfz-potsdam.de, mgott@gfz-potsdam.de), (3) Department Climate Dynamics and Landscape Evolution, Deutsches GeoForschungsZentrum, Telegrafenberg, D-14473 Potsdam, DE

Before any mineral series can be utilized for petrologic interpretation, it should be well-understood chemically, structurally, and thermodynamically. The apatite $[\text{Ca}_5(\text{PO}_4)_3(\text{F},\text{Cl},\text{OH},\text{CO}_3)]$ mineral system promises to be useful in the study of both terrestrial and planetary systems. As a first step in the investigation of these minerals, Schettler, Gottschalk, and Harlov (2011, *American Mineralogist*) reported details of the synthesis and chemical characterization of a fluorapatite-chlorapatite solid solution series. Enthalpies of solution and F-Cl mixing behaviour also have been investigated for these synthetic samples (Hovis and Harlov, 2010, *American Mineralogist*). The former paper reports structures and unit-cell dimensions that were characterized at the GeoforschungZentrum-Potsdam both by Rietveld analysis of powders and single crystal XRD. In the present work, we report unit-cell results and XRD compositional indicators based on measurements at Lafayette College. For present work, XRD measurements were made on powdered samples for twenty members of the same series, employing a Scintag PAD V system, CuK α radiation, and NBS (NIST) 640a Si internal standard. Utilizing the software of Holland and Redfern (1997, *Mineralogical Magazine*), unit-cell dimensions were refined from Si-corrected machine-measured 2Θ values in conjunction with manually-identified Miller Indices. Overall, the resulting unit-cell values based on this methodology are in excellent agreement with those of Schettler et al. (2011). In cases where the Rietveld and single-crystal data of Schettler et al. (2011) produced slightly different results for the same mineral sample, present data generally agree better with the Rietveld-based results than those from the single-crystal data.

Given the different sizes of fluorapatite and chlorapatite unit cells, there are a number X-ray peaks that change positions significantly with F:Cl ratio, making these good compositional indicators. The latter include the {310}, {311}, {321}, {420}, {331}, {421}, and {502} diffraction maxima, all of which are present across the entire solid solution series and change position by more than $1^\circ 2\Theta$, and in three cases by more than $1.6^\circ 2\Theta$, from fluorapatite to chlorapatite. Because different peaks move at different rates with composition, any peak may be overlapped by a second peak over some portion of compositional space, but for all of the latter diffraction maxima this range is relatively restricted. The {311} peak is generally free from interference by other major peaks over the entire compositional span.

One must be cautious in the interpretation of volume behavior for this series, as Cl-rich synthetic samples contain minor amounts (mostly in the range from 4 to 8 mol%) of an oxyapatite component (Schettler et al., 2011). For oxyapatite-free samples that exist over 65% of the compositional range, volume-composition relationships imply positive volumes of mixing, whether data from Rietveld, single-crystal, or the present study are utilized. However, it will not be possible to confirm this mixing behaviour until oxyapatite-free Cl-rich samples become available.