

Population dynamics of suspension feeders structuring the Mediterranean rocky shores: simulations of possible scenarios based on mortality events of 1999 and 2003.

Lorenzo Bramanti (1,3), Silvia Cocito (2), Roberta Cupido (2), Cristina Priori (3), Mimmo Iannelli (4), and Giovanni Santangelo (3)

(1) ICM-CSIC, Biología Marina y Oceanografía, Barcelona, Spain (philebo@gmail.com), (2) Italian Agency for New technologies, Energy and sustainable Economic development (ENEA). Mar. Env. Res. Centre S.Teresa. La Spezia, Italy, (3) University of Pisa, Department of Biology, Pisa, Italy, (4) University of Trento, Department of Mathematics, Trento, Italy

Gorgonians are among the most long-lived marine animals. Provided of complex morphologies, they are “structuring species” shaping the benthic communities of Mediterranean rocky shores. Several populations of the red gorgonian (*Paramuricea clavata*) and the red coral (*Corallium rubrum*) in the North-Western Mediterranean, have been affected by mortality events in 1999 and 2003, which were associated with a sharp temperature increase linked to GCC. As a consequence of these mortality events, the *P. clavata* population living in the Gulf of La Spezia (Ligurian Sea, Italy), reduced by 74% and the dominant size class in the population shifted towards smaller-younger colonies. However, in the last years this population revealed an unexpected resilience capability. Some shallow-water *C.rubrum* populations in Italy and France suffered, at the same time, a mortality affecting 8-15 % of the colonies. In order to simulate the effects of such mortalities on the structure and dynamics of gorgonian populations we developed demographic models, based on Leslie-Lewis transition matrixes, that allowed projecting the population trends over time. Results suggest that, also if both gorgonian populations show a good resilience due to the high reproductive output of the younger-smaller colonies an increased frequency of such mortality events, if coupled with other mortality sources, could lead local populations to extinction.