

3D models of probable animal body-fossils from pre-Marinoan limestones, South Australia

Adam Maloof (1), Robert Beach (2), Sigfus Breidfjord (2), Basar Girit (2), Aleksey Lukyanov (2), Westley Rozen (2), Bradley Samuels (2), Catherine Rose (1), Claire Calmet (1), and Douglas Erwin (3)

(1) Department of Geosciences, Princeton University, Princeton, NJ 08544, United States (maloof@princeton.edu), (2) Situ Studio, 20 Jay Street #203, Brooklyn, NY 11201, United States, (3) Smithsonian Institution, PO Box 37012, MRC 121, Washington, DC 20013, United States

In the Neoproterozoic of South Australia, two glacial successions are separated by a thick package of non-glacial sediments. The interglacial stratigraphy includes salt diapir-fringing stromatolite-oolite shoals, black shales, and an impressive 18‰ negative shift in the $\delta^{13}\text{C}$ of carbonate preceding the younger (Marinoan) glacial unit that was deposited at equatorial latitudes. Within pre-Marinoan stromatolitic limestones are bioclastic packstones containing distinctive weakly calcified fossils. These objects are the oldest cm-scale calcified body fossils ever reported by ~90 Myr. The fossils cannot be physically released from the calcite matrix by conventional techniques, nor are the density contrasts between fossil and matrix significant enough to be imaged with traditional X-ray based CT-scanning methods. We construct 3D digital models of the fossils from automated tracing of individual specimen cross-sections obtained by serially grinding and scanning the sample 50.8 μm at a time. Through this process, we image a population of ellipsoidal organisms without symmetry and with a network of interior canals opening to circular apertures. We suggest that these reef-dwelling organisms share ecological and morphological similarities with sponge-grade animals.