

A modified PeRCA instrument for the selective determination of atmospheric concentrations of HO₂ and RO₂ radicals

Anna Chrobry, María Dolores Andrés Hernández, Deniz Kartal, and John P. Burrows

Institute of Environmental Physics (IUP), Bremen, Germany (achrobry@iup.physik.uni-bremen.de, +49 421 218 4555)

Hydroxyl- and organylperoxyl- radicals, HO₂ and RO₂ respectively, where R refers to an organic chain, play a crucial role in the photo-oxidation processes in the troposphere, in particular in the formation and depletion of tropospheric ozone. They are produced mainly via the oxidation of hydrocarbons and CO by OH radicals.

The peroxy radical chemical amplification (PeRCA) measures the total sum of the HO₂ and RO₂ radicals (RO₂^{*}=HO₂ + Σ RO₂). It is an indirect technique as RO₂^{*} is converted and amplified into NO₂ by adding NO and CO to the sampled air at the entrance of the reactor. HO₂ radicals show a greater loss rate in contact with the inlet walls comparing to RO₂, and based on this property a novel reactor to measure solely RO₂ was constructed varying the position of the addition point of NO and CO. Removal efficiency of HO₂ radicals in this new reaction tube will be quantified and presented.

Radical wall losses also depend on the material properties of the surface. Previous work has shown that coating the reactor surfaces with Teflon reduces these losses and increases the sensitivity of the PeRCA technique. Therefore two identical reactors covered by different inert materials (i.e., Teflon and amorphous silicon) will be compared in laboratory experiments focusing on the values of the chain length of the radical amplification. Results of the effect of the coating material in minimizing wall losses will be shown.