

Transpressional regime in southern Arabian Shield: insights from Wadi Yiba area, Saudi Arabia

Zakaria Hamimi (1), Mohamed El-Shafei (2), Ghazi Kattu (3), and Mohamed Matsah (4)

(1) King Abdulaziz University, Faculty of Earth sciences, Structural Geology & Remote sensing, Jeddah, Saudi Arabia (yahiahamimi@yahoo.com), (2) King Abdulaziz University, Faculty of Earth sciences, Structural Geology & Remote sensing, Jeddah, Saudi Arabia (mshafei@kau.edu.sa), (3) Saudi Geological Survey (kattu_g@hotmail.com), (4) King Abdulaziz University, Faculty of Earth sciences, Structural Geology & Remote sensing, Jeddah, Saudi Arabia (momatsah@yahoo.com)

Detailed field-structural mapping of the Pan-African basement rocks exposed at Wadi Yiba area, Southern Arabian Shield, Saudi Arabia, revealed the presence of four main units; metavolcanics, Ablah Group (meta-clastic and marble units) and syn- and post-tectonic granitoids. The exposed rocks are tectonically evolved during the Neoproterozoic throughout, at least, three phases of deformation (D_1 , D_2 and D_3). D_1 formed tight to isoclinal and intrafolial folds F_1 , penetrative foliation S_1 , and mineral lineation L_1 , which resulted from an early E-W (to ENE-WSW) shortening phase accompanied with the early convergence between East and West Gondwana. D_2 deformation phase progressively overprinted D_1 structures and was dominated by mostly a transpressional regime and top-to-the-W (WSW) thrusting under a compressive environment. Stretching lineation trajectories, S-C foliations, asymmetric shear fabrics and related mylonitic foliation, and flat-ramp and duplex geometries are main evidence supporting the proposed Pan-African transport direction. The N- to NNW-orientation of both "in-sequence piggy-back thrusts" and axial planes of minor and major F_2 thrust-related overturned folds is rather solid evidence indicating the same stress trajectories of compressional regime during the D_2 phase.

Wadi Yiba Shear Zone (WYSZ) is a conspicuous structural fabric related to D_2 phase, and could be traced easily on landsat images. WYSZ is affiliated to the N-S trending brittle-ductile Late Neoproterozoic Shear Zones in the ANS. Shear sense indicators reveal that shearing during the D_2 regional-scale transpression was dextral (right-handed). Dextral sense of shear is consistent with the mega-scale sigmoidal pattern clearly recognizable on the landsat image; i.e. this structural pattern is penetrative all over the mapped area and environs. The shearing led to the formation of the main shear zone and consequent F_2 shear zone-related folds, as well as other unmappable shear zones in the deformed rocks. Moreover, emplacement of the syn-tectonic granitoids is likely to have occurred during the D_2 transpressional phase rather than in an extensional tectonic environment. This conclusion is evidenced by: 1) absence of F_1 folds and at the same time presence of F_3 crenulation lineations and kink bands in syn-tectonic granitoids, 2) off-shooting of these granitoids into the enveloping rocks, and 3) intensive degree of shearing and mylonitization. Emplacement of syn-tectonic granitoid took place to accommodate space resulted from thrust propagation.

D_1 and D_2 structures are locally overprinted by mesoscopic to macroscopic- scale D_3 structures (F_3 folds, and L_3 crenulation lineations and kink bands). F_3 folds are frequently open and have steep to subvertical axial planes and axes moderately to steeply plunging towards the E, ENE and ESE directions. The deformational history of Wadi Yiba area is in agreement with the general evolutionary model proposed for the ANS which represents the northern extension of the East African Orogen or East African-Antarctic Orogen.