

Geochemistry of blueschist facies mafic and ultramafic pseudotachylites

Natalie Deseta (1), Lewis Ashwal (2), and Torgeir Andersen (3)

(1) School of Geosciences, Wits University, Johannesburg, South Africa (ndeseta@gmail.com), (2) School of Geosciences, Wits University, Johannesburg, South Africa (lewis.ashwal@wits.ac.za), (3) PGP, Oslo University, Norway, (t.b.andersen@geo.uio.no)

GEOCHEMISTRY OF BLUESCHIST FACIES MAFIC AND ULTRAMAFIC PSEUDOTACHYLYTES

Deseta, N1, Ashwal, L.D.1, Andersen, T.B.2

1School of Geosciences, University of the Witwatersrand, South Africa; ndeseta@gmail.com

2Department of Geosciences – PGP, University of Oslo, P.O.Box 1047, Blindern, 0316 Oslo, Norway

Keywords: pseudotachylite, total fusion, blueschist facies

Ultramafic and mafic pseudotachylites (PST) have been discovered within the Ligurian Ophiolite of the high pressure-low temperature metamorphic (HP-LT) 'Shistes Lustres' complex in Cima di Gratera, Corsica (Austrheim and Andersen, 2004). Ultramafic PST are preserved in lenses of pristine to hydrated peridotite and gabbro surrounded by schistose serpentinites. The PST have a large range in vein thickness from 1 mm to 25 cm, with common fault-vein thicknesses of 1-2 cm (Andersen and Austrheim, 2006). Petrography and geochemistry on PST from both gabbro and peridotite indicates that total/near-total fusion of the local host rock mineral assemblage typically occurs; bringing up the temperature of shear zone from 350° C to 1400 - 1700° C; depending on the host rock (Andersen and Austrheim, 2006). The composition of the PST is highly variable, even at the thin section scale and this has been attributed to the coarse-grained nature of the host rock and its small scale inhomogeneity. Almost all the bulk analyses of the PST are hydrous; the peridotitic PST more so than the gabbro; the H₂O content of the melt ranges from 0 to 14 wt %. The hydrous nature of the PST is due to the melting of hydrous minerals (chlorite and serpentine - peridotite, glaucophane, epidote, Mg-hornblende - gabbro) in the host rock, rather than later hydration associated with exhumation (greenschist facies metamorphism and later alteration). Despite the fact that the peridotite is more water-rich than the gabbro the gabbro-hosted PST has crystallization products of hydrous blueschist facies mineral assemblages (glaucophane, edenite), whilst the peridotite-hosted PST has an anhydrous mineral assemblage of fassaitic pyroxene and olivine and contains an Al-rich, H₂O-rich phase (glass/talc?). In order to explain this observation it is proposed that the local host rock mineral assemblage forms an upper limit on the temperature of the PST formed (Swanson, 1992 and Spray, 1992); combined with the H₂O saturation of the melt and its composition the resulting crystallization products will differ (Koons, 1982).

References

Austrheim, H. and Andersen, T.B. (2004) Pseudotachylites from Corsica: fossil earthquakes from a subduction complex. *Terra Nova*, vol. 16, p. 193 -197.

Andersen, T.B. and Austrheim, H. (2006) Fossil earthquakes recorded by pseudotachylites in mantle peridotite from the Alpine subduction complex of Corsica. *Earth and planetary science letters*, vol. 242, p. 58 – 72.

Koons, P.O. (1982) An experimental investigation of the behavior of amphibole in the system Na₂O-MgO-Al₂O₃-SiO₂-H₂O at high pressure. *Contributions to mineralogy and petrology*, vol. 79, p. 258 – 267.

O'Hara, K. (1992) Major- and trace-element constraints on the pertogenesis of fault-related pseudotachylites, western Blue Ridge province, North Carolina. *Tectonophysics*, vol. 204, p. 278 – 288.

Spray, J.G. (1992) A physical basis for the frictional melting of some rock-forming minerals. *Tectonophysics*, vol. 204, p. 205 – 221.

Obata, M. and Karato, S. (1995) Ultramafic pseudotachylite from the Balmuccia peridotite, Ivrea-Verbano zone, northern Italy. *Tectonophysics*, vol. 242, p. 313 – 328.

Swanson, T. (1992) Fault structure, wear mechanisms and rupture processes in pseudotachylites genera-

tion. *Tectonophysics*, vol. 242, p. 223 – 242.