

Seasonal variability of $f\text{CO}_2$ in the eastern North Atlantic Ocean

Anna Barrera-Galderique, Melchor González-Dávila, and J. Magdalena Santana-Casiano

Facultad de Ciencias del Mar, Departamento de Química, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas, Spain (anna.bargald@gmail.com)

Monthly measurements of $f\text{CO}_2$, temperature, salinity and chlorophyll *a* were analyzed from July 2005 to April 2008 for the studied area located at the northwest European shelf from 40°N 10°W to 52°N 2°E using volunteer observing ships (VOS). The objective was to gauge the seasonal variability of $f\text{CO}_2$ in surface seawaters, and the seasonal air-sea CO_2 exchange, taking into account the latitudinal transition of relative importance in the temperature and the biological effects on seawater $f\text{CO}_2$ variability, and the dynamic of the upwelling that affects the air-sea fluxes of CO_2 . Due to the area of the study covered different hydrographical conditions, the area was divided into three regions. The results showed a complex surface hydrodynamic system, with coast upwelling, vertical mixing processes and fronts affecting the physical, chemical and biological parameters that control the surface distribution of $f\text{CO}_2$. The Galician coast region (40°N-43.5°N) acted as an active sink, with a rate of oceanic CO_2 uptake of $-2.86 \pm 0.69 \text{ mol m}^{-2} \text{ yr}^{-1}$ in 2006 and $-3.75 \pm 0.78 \text{ mol m}^{-2} \text{ yr}^{-1}$ in 2007. Moreover, in upwelling periods, SST decreased by over 6°C and $f\text{CO}_2$ was strongly affected, indicating that both solubility and biological uptake effects are compensating upwelled CO_2 rich water. Blooms of phytoplankton reduced the $f\text{CO}_2$ in the area. The Biscay Bay region (43.5°N-48.5°N) also acted as a homogenous sink of CO_2 , with fluxes of $-3.79 \pm 0.57 \text{ mol m}^{-2} \text{ yr}^{-1}$ in 2007. However, in 2006, the CO_2 fluxes were closer to equilibrium. These results were explained by changes in the wind fields, with very low wind speeds during 2006, while $f\text{CO}_2$ gradients kept relatively constant. The English Channel region (48.5°N-52°N) presented the highest variability observed that indicated the strong influence by river inputs, biological events and the fronts, acting as a sink in winter and spring and as a source in summer and autumn. Annually, the western English Channel acted as a variable source of CO_2 , with fluxes of $0.53 \pm 2.50 \text{ mol m}^{-2} \text{ yr}^{-1}$ in 2006 and $0.70 \pm 2.78 \text{ mol m}^{-2} \text{ yr}^{-1}$ in 2007, while in the eastern English Channel acted as an important sink of CO_2 , with fluxes of $-5.95 \pm 3.97 \text{ mol m}^{-2} \text{ yr}^{-1}$ in 2007, with a strong influence of the biological effects on the area.