

Heterogeneous interaction of N₂O₅ with mineral dust aerosol

Mingjin Tang, Jim Thieser, Nicolas Pouvesle, Gerhard Schuster, and John Crowley

Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Germany (mingjintang@gmail.com)

The heterogeneous reaction of N₂O₅ with mineral dust aerosols was investigated in an atmospheric pressure aerosol flow tube. N₂O₅ was measured by cavity ring-down spectroscopy, enabling the use of initial N₂O₅ concentration of less than 10 ppbv. Uptake coefficients of $\sim 10^{-2}$ were found for Saharan dust, independent of relative humidity or [N₂O₅]. The presence of O₃ (1-10 ppmv) was found to enhance the uptake of N₂O₅ significantly, indicating a surface-catalyzed decomposition mechanism rather than heterogeneous hydrolysis. Results from the heterogeneous reaction of mineral dust aerosol with HNO₃ (measured by chemical ionization mass spectroscopy) will also be presented and compared.