

Hydrological validation of historical precipitation reconstruction

Pierre-Antoine Versini, Marc Berenguer, Romeo Ballinas-González, and Daniel Sempere-Torres
CRAHI-UPC, Barcelona, Spain

In order to define future climate scenarios and study climate change impact, a detailed database of historical climate is necessary. It is particularly the case when a [U+FB01]ne spatial scale is required as for regional and environmental impact studies. As a preliminary step to define future precipitation scenarios, this work has focused on the reconstruction of spatially distributed daily precipitation on a 30-year period (1980-2010).

Two alternatives have been proposed to reconstruct daily precipitation in the Llobregat basin (5000 km²). First, historical rain gauges network data have been filled and patched using regression methods, and then interpolated using a spline method. Second, a principal component analysis (PCA) of historical radar data has been used to interpolate historical gauge measurements to produce 3km-resolution daily rainfall maps. These historical reconstructions have been compared to the SPAIN02 reference, a 20-km gridded daily precipitation dataset generated by the Spanish Meteorological Agency (AEMET).

In order to assess these data from a practical point of view, both datasets have been used as inputs to a rainfall-runoff model. Simulated discharges have been compared to the observed ones for several watersheds (between 100 and 1000 km²) located on the studied territory. Results show that both precipitation reconstructions are quite good. Simulated discharges are very similar for the largest watersheds. PCA-based data have the advantage to better reproduce intense local rainfall on the smallest watersheds.