

3-D morphologic and stratigraphic characteristics of deep-water debris-flow deposits in the Ulleung Basin, East Sea (Japan Sea)

Hyewon Sa (1), Ryeongsim Seok (1), Bumsuk Lee (1), Cheol Hoon Mo (1), Gwang Hoon Lee (1), Dong Geun Yoo (2), Hyun-Chul Han (2), Byung Jae Ryu (2), and Moo Hee Kang (2)

(1) Department of Energy Resources Engineering, Pukyong National University, Busan 608-737, Korea
(chyornui@gmail.com), (2) Korea Institute of Geoscience and Mineral Resources, Daejon 305-350, Korea

3-D seismic data from the southern central part of the Ulleung Basin, East Sea (Japan Sea) reveal geomorphologic and stratigraphic characteristics of the debris-flow deposits that have retreated landward since the Latest Neogene. The debris-flow deposits form lens- or wedge-shaped seismic units with structureless or transparent to chaotic internal reflection. Over ten debris-flow deposit bodies were identified from the seafloor to the subsurface depth of about 300 m. The largest debris-flow deposit body exceeds the dimension of the 3D seismic data (16 km by 25 km) and its thickness reaches about 60 m. Some debris-flow deposit bodies appear to be amalgamated or coalesced, making it difficult to interpret the individual units. In plan view, the debris-flow deposits look elongate or lobate. The coherence attribute of the basal contact of some debris-flow deposits shows erosional scars and long grooves (< 300 m in width). The grooves, slightly diverging downslope, are inferred to be caused by large clasts imbedded at the base of debris-flow mass that were dragged across the seafloor.