

Stochastic Analysis of Double Gyre and Thermohaline Flows

Themistoklis P. Sapsis, Pierre P.F.J. Lermusiaux, and Mattheus P. Ueckermann
MIT, Mechanical Engineering, Cambridge, MA 02139, United States (PIERREL@MIT.EDU, 001-617-49)

We study and analyze the stochastic response of an idealized model of the variability of large-scale wind-driven ocean circulations. Specifically, we consider the two-dimensional barotropic quasi-geostrophic model of double gyre flows and characterize the stochastic response of this model to a wide range of Reynolds numbers and forcing parameters. Also considered are two-dimensional thermohaline circulations and their stability properties. The stochastic analyses, including time-dependent modal decompositions and energy transfers, are completed using new partial differential equations, the Dynamically Orthogonal (DO) field equations, and a new numerical finite-volume stochastic partial differential framework.