

Metabolomic evaluation of *in vitro* ^{31}P Nuclear Magnetic Resonance (NMR) in maize seedlings treated with humic acids

Leonardo Dobbss (1), Pierluigi Mazzei (2), Alessandro Piccolo (2), Fábio Olivares (1), and Luciano Canellas (1)

(1) Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000 - Campos dos Goytacazes (28013-602). Rio de Janeiro, Brazil (ldobbss@uenf.br / +55 22 27397194), (2) Dipartimento di Scienze del Suolo, della Pianta, dell'Ambiente e delle Produzioni Animali (DISSPAPA) / Centro di Ricerca Interdipartimentale sulla Risonanza Magnetica Nucleare (NMR) per l'Ambiente, l'Agro-Alimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, Portici (80055), Naples, Italy.

We reported changes on distribution of P containing soluble metabolites from maize root seedlings treated with humic acids (HA) by *in vitro* ^{31}P NMR techniques. We observed that plants treated with HA had shown an increase of the phosphatidyl choline species. These compounds are involved with integrity and fluidity properties of plasma membrane. Moreover, HA root-treated decreased its nucleoside triphosphate (NTP) content with consequent increase of ADP and inorganic phosphate, which was compatible with literature reports indicating higher plasma membrane H⁺-ATPase activity. Finally, we also detected an increase on glycose-6-phosphate content in root seedlings treated with HA suggesting changes in glycolitic pathways as previously reported by Nardi et al. (2007). P-bound soluble metabolites determination by ^{31}P NMR seems to be useful to detect changes on plant metabolites induced by HA.