

Contrasting effects of long term vs short term N addition on foliar CO₂ exchange parameters of two common Arctic peat land plant species

Martine Janet van de Weg, Gaius Shaver, and Verity Salmon

Marine Biological Laboratory, The Ecosystem Center, Woods Hole, United States, (mvandeweg@mbl.edu)

The productivity of Arctic peatlands is generally limited by cold temperatures, short growing seasons and low nitrogen (N) supply. However, due to increased deposition rates as a consequence of anthropogenic activity, as well as through higher mineralization rates following climate warming, the N availability in the Arctic ecosystems is expected to increase. In fertilizer experiments, higher N availability is known to increase primary production as well as the leaf area index. Furthermore, N addition changes species composition: shrub cover typically increases while bryophyte cover decreases. Less is known, however, about the effects of N addition on the leaf CO₂ exchange parameters. Previous N addition experiments in Arctic peat lands (lasting 1-4 years) showed some increases in the leaf level net C-uptake, though this response was inconsistent among species. It is also unclear whether this response can be extrapolated to a prolonged period of elevated N supply (> 20 years). Moreover, less is known about whether and how the investment of N in different components of the photosynthetic apparatus changes following short or long term N addition. The latter is of particular interest, since in many vegetation models or upscaling exercises the parameters determining leaf level C-uptake are scaled by the amount of foliar N.

The aims of our study were (1) to investigate the effects of short and long term N addition on the foliar CO₂ exchange parameters of Arctic peat land species, and (2) to determine relative N investment in different parts of the photosynthetic apparatus after short and long term N addition. We compared the carboxylation efficiency of Rubisco (V_{cmax}), electron transport capacity (J_{max}), dark respiration (R_d), chlorophyll content and total foliar N of sun lit leaves from two species after short term (6 weeks), and longer term (4 years and 21 years) N (and P) addition. The species included were *Betula nana* and *Eriophorum vaginatum* and the experiments were carried out in moist acidic tussock tundra in Northern Alaska, near the Toolik Lake field station.

(1) For both *B. nana* and *E. vaginatum* no significant differences in V_{cmax} and J_{max} were observed after short and long term N addition. In contrast, R_d was significantly higher in both species after 24 years of N addition, but not in the shorter term treatments. (2) For *E. vaginatum*, the N content did not change greatly after short or long term N addition, and hence no significant differences in partitioning of N to the photosynthetic parameters were found. For *B. nana*, however, the foliar N was increased by 20 to 50% as a consequence of 6 weeks to 24 years of N addition, respectively. In other words, for *B. nana* the photosynthetic N use efficiency decreased with increasing N availability. The amount of chlorophyll increased only for *B. nana* in the 6 weeks N addition treatment.

Overall, these results show that the effects of N addition on plot level productivity observed in other studies are not a consequence of changes in the photosynthetic capacity per unit leaf area. It also implies that species from N-limited areas like Arctic peatlands might already optimize their photosynthetic capacity and that the photosynthetic capacity: N ratio is flexible within one species. Finally, the R_d results showed that some effects of increased N addition can only be observed after more than two decades of fertilisation, which underlines the importance of long term ecological experiments.