

Methanogenic growth at high partial pressures of CO₂: Implications for the injection of CO₂ into biogenic gas reservoirs

Burt Thomas (1), Yousif Kharaka (2), and Robert Rosenbauer (2)

(1) US Geologic Survey, Menlo Park, CA United States (burt_thomas@usgs.gov), (2) US Geologic Survey, Menlo Park, CA United States

The *in situ* chemical environment of deep microorganisms is not reproducible with traditional *in vitro* methods.

To explore hypotheses related to microbial activity at high pressure, we have adapted the flexible-gold reaction-cell technology used in hydrothermal experiments for the aseptic inoculation, growth, and sterilization of microbial cultures at pressures up to several hundred bars. This experimental capability allows for serial sub-sampling of microbial culture fluids and the coexistence of separate CO₂, hydrocarbon, and aqueous fluids. We demonstrated a proof of concept with 1) yeast cultures and 2) obligately anaerobic aceticlastic methanogens. We present the results of a set of experiments related to the dependence of methanogenic growth on the partial pressure of CO₂ at total pressures greater than 100 bars. Preliminary results indicate that in nature, CO₂ concentrations may reach a critical threshold whereby a separate CO₂ rich fluid phase becomes an effective sterilizing agent. In addition, we present a theoretical model consistent with high partial pressures of CO₂ as a general limitation of microbial activity at depth.