

HO_x Budgets during HO_x Comp: a Case Study of HO_x Chemistry under NO_x limited Conditions

Yasin Elshorbany (1,2), Jörg Kleffmann (1), Ralf Kurtenbach (1), Peter Wiesen (1), Andreas Hofzumahaus (3), Hans-Peter Dorn (3), Eric Schlosser (3), Yugo Kanaya (4), Ayako Yoshino (5), Satoshi Nishida (5), and Yoshizumi Kajii (5)

(1) University of Wuppertal, Physical Chemistry/FBC, Physical Chemistry, Wuppertal, Germany
(elshorbany@uni-wuppertal.de, +49 2024392757), (2) Environmental Research Division, National Research Centre, Cairo, Egypt, (3) Forschungszentrum Jülich, ICG-2: Troposphäre, 52425 Jülich, Germany, (4) Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan, (5) Tokyo Metropolitan University, Tokyo, Japan

Recent studies have shown that measured OH radical concentrations under low NO_x, rural conditions are many times higher than modelled OH, from which NO independent OH regeneration pathways were proposed. In this study, a detailed analysis of the HO_x radical budgets under low NO_x, rural conditions were investigated employing a zero dimensional photochemical box model based on the Master Chemical Mechanism (MCMv3.1). The model results were compared and contrasted with highly reliable HO_x radical measurements performed during the international HO_xComp campaign carried out in Jülich, Germany during summer, 2005. Two different air masses were experienced by the measurement site denoted as high NO_x (1-3 ppbv) and low NO_x (<1 ppbv) periods. Excellent agreement was obtained between measured and modelled OH radical levels, while HO₂ was slightly overestimated with measured to model ratio of 0.98 and 0.85, respectively. Average modelled reactivities during the high and low NO_x periods of 8.0 s⁻¹ and 8.6 s⁻¹ were also in excellent agreement with that measured. A balance ratio (BR) between the secondary radical production and destruction near unity was obtained during the high NO_x period owing to the high recycling efficiency. However, during the low NO_x period, a BR ratio of only 0.75 was obtained indicating net secondary radical loss owing to the low recycling efficiency. In addition, under low NO_x condition, significant fraction of the OH radical recycling processes occur without NO through P_{OH}(ROOH+hv) and P_{OH}(HO₂+O₃). During the high and low NO_x periods, O₃ had the highest contribution of 48 % and 57 % to the OH initiation sources followed by HONO (46 %, 34 %) and alkene ozonolysis (6 %, 9 %), respectively.