

Testing of a continuous technique for triple water isotope determination

Shyam Ranjan and Markus Leuenberger

Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland (shyam@climate.unibe.ch)

Various results indicate that there is a mass independent fractionation (MIF) signal in stratospheric water vapor, but its magnitude is still under discussion (1,2). As in the case of CO₂, MIF in tropospheric H₂O is expected to be significantly smaller than in stratospheric O₃. It has been shown that $\Delta^{17}\text{O}$ during evaporation depends on h_n (ratio of vapor concentration in the free air to the saturated concentration at the temperature and salinity of the sea surface) and therefore can be used to estimate past changes in humidity from aquifers containing fossil waters as well as from ice cores (3). Recently it has been observed that $\Delta^{17}\text{O}$ in Antarctic ice remained small over long time periods. This finding contrasts with measurements of $\Delta^{17}\text{O}$ on monthly-integrated precipitation samples collected from the Swiss precipitation network run by UBern, which showed occasionally large deviations in $\Delta^{17}\text{O}$ of up to several per mil. The latter measurements were undertaken with the conventional CO₂-H₂O equilibration system for isotope ratio investigations on water samples that exhibits a limited precision of about 80 permeg (4). Based on the method developed by Baker et. al. (5), we investigated a continuous flow technique for its quantitative conversion and precision regarding water oxygen. To check the complete conversion of H₂O by CoF₃, an equivalent amount of oxygen in an atmospheric air aliquot was injected. Precision of single runs is significantly above the targeted numbers, therefore multiple injections are requested to approach the 5 to 10 permeg level..

References

1. C.R. Webster et. al., Water isotope ratio D/H, $^{18}\text{O}/^{16}\text{O}$, $^{17}\text{O}/^{16}\text{O}$ in and out of cloud map dehydration pathway. *Science* **302** 1742(2003),10.1126/Science.1089496
2. P. Franz et al., High-precision isotope measurement of H₂¹⁶O, H₂¹⁷O, H₂¹⁸O and the $\Delta^{17}\text{O}$ -anomaly of water vapor in southern lowermost stratosphere. *Atmospheric Chemistry and Physics* **5**, 2949(2005),1680-7324/Atmos. Chem. Phys.2005-5-2949
3. E. Barkan et.al., Diffusivity fractionations of H₂¹⁶O/H₂¹⁷O and H₂¹⁶O/H₂¹⁸O in air and their implications for isotope hydrology. *Rapid Communication In mass Spectrometry* **21** 2999(2007), 10.1002/rcm.3180
4. J. Elsig et.al., Measurements of the ^{17}O Excess in water with the equilibration method. *Analytical Chemistry*, **80/9** 3244(2008),10.1021/ac702436t
5. L. Baker et al., A technique for the determination of $^{18}\text{O}/^{16}\text{O}$ and $^{17}\text{O}/^{16}\text{O}$ isotopic ratio in water from small liquid and solid samples. *Analytical Chemistry*, **74/7**(2002), 10.1021/ac010509s