

Turnover and stabilization of organic carbon and plant derived alkanes in soil density fractions

Guido Wiesenberge (1), Maxim Dorodnikov (1,2), Yakov Kuzyakov (1), and Andreas Fangmeier (3)

(1) Department of Agroecosystem Research, University of Bayreuth, 95440 Bayreuth, Germany , (2) Institute for Botany and Landscape Ecology, Ernst Moritz Arndt University Greifswald, 17489 Greifswald, Germany, (3) Institute for Landscape and Plant Ecology Institute, University of Hohenheim, 70593 Stuttgart, Germany

Organic carbon has been determined to be protected against degradation within soil aggregates. Due to the improved protection within aggregates the turnover of organic carbon decreases with decreasing aggregate size. Hence, degradation occurs predominantly within free particulate organic matter (fPOM) which is dominated by plant litter and occluded particulate organic matter (oPOM), while the mineral fraction contains degradation products. However, it has not been determined how plant derived organic matter including lipidic compounds enters aggregates and in which part of soil aggregates they are preferentially degraded and protected. In this study, we applied organic carbon and lipid analyses to soil density fractions derived from the Mini-FACE (free air CO₂ enrichment) experiment in Hohenheim during a time series of five years after introduction of the experiment. $\delta^{13}\text{C}$ isotopic values of organic carbon revealed a fast turnover in the fPOM followed by oPOM 1.6, oPOM 2.0 and mineral fraction. A seasonality of organic carbon input and degradation can be observed in aggregate fractions.

In general, compound-specific alkane isotope composition ($\delta^{13}\text{C}$) confirmed the incorporation of bulk carbon, whereas seasonality was less exposed than for bulk carbon, which is due to the slower turnover of alkanes compared to bulk carbon.