

On the interpretation of catchment-scale parameters in terms of spatial versus temporal variations

Michael Roderick (1) and Graham Farquhar (2)

(1) Research School of Earth Sciences, The Australian National University, Canberra, Australia
(Michael.Roderick@anu.edu.au), (2) Research School of Biology, The Australian National University, Canberra, Australia
(Graham.Farquhar@anu.edu.au)

The Budyko framework formulates catchment-scale energy and mass transfers in terms of a balance between supply (i.e. precipitation) and demand (i.e. evaporative demand). Modern versions of this formulation include a catchment parameter that can be “tuned” to reproduce historical records. In practice, that tuned value can be used to make predictions about the sensitivity of a catchment to changes in climate. However, as a matter of principle, the “catchment parameter” might change over time. How can we estimate it? In this paper we present a qualitative framework to describe how the catchment parameter in the widely used Budyko framework might change with some typical forcings (e.g. changes in atmospheric CO₂, etc.) We subsequently identify a very interesting problem where changes in the spatial distribution of the catchment-scale forcings can lead to temporal changes in catchment-scale parameters.