

Dynamical threshold may enhance variability of subpolar gyre

Anders Levermann (1,2), Matthias Mengel (1), Andreas Born (3,4), Carl Friedrich Schleussner (1,2)

(1) Earth System Analysis, Potsdam Institute for Climate Impact Research, Potsdam, Germany (mengel@pik-potsdam.de), (2) Institute of Physics, University of Potsdam, Germany, (3) Bjerknes Centre for Climate Research, Bergen, Norway, (4) Geophysical Institute, University of Bergen, Norway

Direct observations, satellite measurements and paleorecords reveal strong variability of the Atlantic subpolar gyre (SPG) on various time scales. We present simulations with a coarse-resolution coupled climate model which includes an oceanic general circulation model but is lacking internal variability due to its statistical-dynamical atmosphere. In equilibrium simulations the Atlantic SPG exhibits a threshold response to anomalous constant surface freshwater flux. When applying time-variable surface forcing the magnitude of SPG variability as seen in observations can only be reproduced when the system is close to this dynamical threshold. Near the threshold multi-decadal to centennial-scale variability is strongly enhanced for both surface freshwater and surface wind stress forcing. Our results thus indicate that previously reported positive baroclinic feedbacks may play a dynamic role in presently observed SPG variability. They further suggest a mechanism for long-term variability of the North Atlantic Oscillation (NAO) where a strong SPG is associated with a positive NAO phase.

A. Levermann, M. Mengel, A. Born, C. F. Schleussner; Dynamical threshold may enhance variability of subpolar gyre; submitted.