Recent extreme snow-avalanche events tracked through tree-ring analysis
- a case-study from Western Norway

Armelle Decaulne (1), Ólafur Eggertsson (2), Estelle Arbellay (3), Katja Laute (4), and Achim A. Beylich (4)
(1) CNRS Geolab, University Blaise Pascal, Clermont-Ferrand (armelle.decaulne@univ-bpclermont.fr), (2) Iceland Forest
Service, Research Branch, Mogilsá, Reykjavík, Iceland (olie@skogur.is), (3) Laboratory for Dendrogeomorphology, Institute
of Geological Sciences, University of Berne, Berne, Switzerland (estelle.arbellay@dendrolab.ch), (4) Geological Survey of
Norway (NGU), Trondheim, Norway (Katja.Laute@ngu.no), (4) Geological Survey of Norway (NGU), Trondheim, Norway
(Achim.Beylich@ngu.no)

The study is carried out in the valleys Erdalen and Bødalen, in the Nordfjord area, Western Norway, thanks to the
SedyMONT project. This location offers good potentiality to track recent snow-avalanche activity by applying a
dendrogeomorphological approach. Both valleys benefit from well developed stands of birch (Betula pubescens)
and alder (Alnus) that cover large parts of the extreme runout zone of snow avalanches. Potentially, these trees
did record the recent history of this geomorphic process through their tree-ring patterns. Therefore, dendrogeo-
morphology analyses provide crucial information on the magnitude, frequency, and spatial distribution of snow-
avalance events during the tree lifespan. Although the investigated valleys are quite remote during the winter
time, the knowledge of the recent snow-avalanche history there supplies a picture of the potential activity that can
be awaited elsewhere in the district, and especially (i) in the inhabited areas; (ii) along the transportation corridors
that do not benefit from such a record.