

The Next Generation of Space Plasma Analyzer - Deployable Radial Imaging for Velocity, Energy, and Density (DRIVEN)

Glyn Collinson (1), Thomas Moore (1), David Durachka (1), David Olson (1,2), David Knudsen (3,1), Paul Rozmarynowski (1), Adrienne Beamer (1), and Jeffrey Klenzing (1)

(1) Heliophysics Science Division, NASA Goddard Spaceflight Center, Greenbelt, MD, (2) University of Maryland, College Park, MD, United States., (3) Department of Physics & Astronomy, University of Calgary, Calgary, AB, Canada.

We present initial developments towards a space plasma analyzer capable of making simultaneous observations of cold (<1eV) and high-energy (5keV) space plasmas at revolutionary temporal and spatial resolution. "Top Hat" plasma analyzers [1] (the current "state of the art") typically have modest azimuthal resolution (c.f. 10 degrees, for reasons of electronic practicality), and can only read out a single energy at a time, thereby requiring a swept voltage to sample a range of energies. True energy imaging of particle populations was achieved with the Freja Cold Plasma Analyzer [2], and at higher time and energy resolution on subsequent sounding rocket flights using a CCD-based detection scheme, but only at energies below 200 eV [3]. We propose to overcome these shortcomings using novel particle optics and directly imaging space plasma distributions using a revolutionary 2D position-sensitive readout technique, thereby covering particle energies from cold to energetic while eliminating the need for an energy sweep. Measurements of <1eV electrons and ions are currently very challenging owing to effects of spacecraft charging. Existing s/c systems such as ASPOC on Cluster are complex, expensive and have a limited lifetime. Our boom-mounted sensor will automatically compensate for changes in spacecraft potential through the reverse biasing of its outer skin according to measurements from an integrated Langmuir probe.

- [1] Carlson et al., *Adv. Space Res.*, 2(7), 67, (1982)
- [2] Whalen et al., *Space Sci. Rev.*, (70), 541. (1994)
- [3] Knudsen et al., *Rev. Sci. Instrum.*, (74), 202. (2003)