

Processes behind multi-year droughts in catchments with seasonal climate and storage

Anne Van Loon, Olda Rakovec, and Henny Van Lanen

Wageningen University and Research Centre, Hydrology and Quantitative Water Management Group, Wageningen, the Netherlands (anne.vanloon@wur.nl)

Multi-year droughts in groundwater and streamflow occur in catchments with an arid or polar climate with low seasonality (B/E-climates). In addition, multi-year droughts are found in catchments with seasonal climate (C/D-climates) and considerable storage (e.g. in lakes and groundwater). The causes of these long-lasting droughts are not easy to determine because a combination of mechanisms plays a role. In this research, we studied droughts in two headwater catchments in the Czech Republic, i.e. Upper-Metuje and Upper-Sázava. As a common model we used the semi-distributed rainfall-runoff model HBV. Droughts in precipitation, soil moisture, groundwater, and discharge were evaluated using the threshold level method with a smoothed monthly 80th percentile of the duration curves as threshold. The processes behind the most extreme multi-year droughts in the two catchments have been analysed. In Upper-Metuje we used: i) the 1983-1984 groundwater drought (duration 14 months) caused by two successive summer droughts in 1982 and 1983, and ii) the 1999-2001 groundwater drought (duration 20 months, with short interruptions), caused by two summer and autumn droughts in 1999 and a spring drought in 2000. In Upper-Sázava we studied: the 1989-1992 groundwater drought (duration 25 months) caused by two successive winter droughts in 1989-1990 and 1990-1991.

Based on the study of these long-lasting groundwater droughts we found the following mechanisms underlying the development of these multi-year droughts:

- more than one precipitation drought period is needed over several years: an isolated precipitation drought is attenuated in the stores,
- a considerable lag occurs: the first precipitation drought leads to lower groundwater levels, but only after a second or third precipitation drought a groundwater drought develops,
- quickflow by snow melt does not recharge the groundwater system, but is discharged to the stream as surface runoff or shallow subsurface runoff: groundwater droughts continue, whereas droughts in discharge are interrupted, but they return to their drought state afterwards,
- at the end of the multi-year drought, groundwater levels are still low and the system is vulnerable to another drought if recharge is not above average for a longer period.

This analysis shows the mechanisms related to multi-year droughts in catchments with a seasonal climate and considerable storage in lakes or groundwater. It shows that although droughts are unique, having different causes and different timing, they share common characteristics.