

Inter-annual variation of runoff and soil loss in Europe and the Mediterranean in relation to land use and climate.

Willem Maetens (1,2), Jean Poesen (1,2), Matthias Vanmaercke (1,2)

(1) Department of Earth and Environmental Sciences, K.U.Leuven, Leuven, Belgium (willem.maetens@ees.kuleuven.be), (2) DESIRE project, EU-FP6 (<http://www.desire-project.eu>)

Experimental assessment of annual runoff (R) and soil loss (SL) by sheet and rill erosion is often obtained from runoff plots with a limited measuring period and the data are often summarized as the average annual R and SL for that measuring period. Likewise, erosion models like RUSLE and PESERA also predict the mean long-term SL. For many applications such as the design of soil and water conservation measures, it is not only necessary to estimate the mean long-term R and SL, but also the maximum R and SL that may occur. While most individual studies provide an estimate of the annual variation in R and SL, the limited number of plots and measurement years for each of these studies separately does not allow to draw general conclusions about temporal variability of R and SL. So far, also modelling efforts to quantify SL for Europe have not considered the annual variation of R and SL data.

Therefore, the objectives of this study are to quantify the inter-annual variation of R and SL measured on runoff plots throughout Europe and the Mediterranean. Secondly, it is explored whether the annual variation of R and SL is related to climatic conditions and/or land use on the plot.

R and SL data for which a minimum of 7 consecutive years of R and/or SL measurements was available were selected from a runoff plot database for Europe and the Mediterranean region, recently compiled within the framework of the DESIRE project (EU-FP6). This resulted in a dataset of 175 time series, with a total of 2 434 plot-years from 43 measuring sites throughout Europe and the Mediterranean. It was shown that the majority of these time series are not normally distributed and right-tailed, with maximum values within time series being up to 60 times larger than median values for R and up to 150 times for SL. Hence, the use of statistical variables derived from the normal distribution (e.g. mean or standard deviation) are of limited use when describing R and SL time series. Furthermore, it was demonstrated that the magnitude of temporal variability of R and SL decreases with increasing magnitude of the median R and SL in the time series. With respect to climate, inter-annual R and SL variability first increases, then reaches a maximum and finally decreases with increasing annual precipitation. No clear trends in temporal variability of R and SL were found between different land uses, and the observed differences between land uses are likely caused by the above-mentioned factors.

keywords: temporal variation, runoff, soil loss, erosion plots, land use, climate