

Evaluation of UT/LS humidity in the ECMWF model using five years of CARIBIC observations

Christoph Dyroff (1), Andreas Zahn (1), and Carl A. M. Brenninkmeijer (2)

(1) Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany (christoph.dyroff@kit.edu / 0049 721 608 24742), (2) Max Planck Institute for Chemistry, Becherweg 27, 55128 Mainz, Germany

Water vapor, relative humidity and temperature in the upper troposphere and lower stratosphere (UT/LS) derived from the ECMWF model is evaluated and compared to long-term in-situ CARIBIC passenger aircraft measurements. The combination of a sideways-facing inlet for (gas-phase) water vapor and a forward-facing inlet for total water (water vapor plus cloud water/ice) allows to distinguish measurements taken inside and outside of clouds. Probability density functions are used to study the models capability to forecast UT/LS humidity. Furthermore, seasonally and latitudinally resolved vertical profiles have been inferred from ECMWF and CARIBIC data to investigate the ability of the model to represent troposphere-to-stratosphere water transport.