

Kinetic Study of Asymmetric Magnetic Reconnection

Pierre Henri (1), Giovanni Lapenta (1), Stefano Markidis (1), Lapo Bettarini (1), Stefan Eriksson (2), Laila Andersson (2), Martin Goldman (2), and David Newman (2)

(1) Katholieke Universiteit Leuven, Afdeling Plasma-astrofysica, Heverlee, Belgium (giovanni.lapenta@wis.kuleuven.be, +32-(0)16-327998), (2) University of Colorado, Boulder

Physical configurations in space are such that different density and magnetic field strengths may be present on both parts of the reconnection site: dayside magnetopause and asymmetric magnetic breakout for CMEs. We present 2D-3V fully kinetic (electrons and ions) and fully electromagnetic simulations of such asymmetric magnetic reconnection, using the iPIC3D code (used in 2D-3V) [1]. Such a kinetic description enables to self-consistently describe the dissipation region substructure of collisionless reconnection, in particular the particle kinetic effects: plasma instabilities, production of energetic particles. The evolution of the proton and electron distribution functions is described during the reconnection process. The study is conducted for a physical mass ratio, in order to support current multi-spacecraft missions (specifically the NASA Magnetospheric Multi-Scale mission).

[1] S. Markidis, G. Lapenta, Rizwan-uddin, Mathematics and Computers in Simulation, Volume 80, 1509, 2010, DOI: 10.1016/j.matcom.2009.08.038.