

Physicochemical indices for N mineralization from vegetable cultivated soils Flanders Belgium

Kanagaratnam Jegajeevagan, Steven Sleutel, and Stefaan DeNeve

University of Ghent, Faculty of Bioscience and Engineering, Department of Soil Management, Gent, Belgium
(pkjesi@yahoo.co.uk, fax +32 9 2646247)

Physicochemical indices for N mineralization from vegetable cultivated soils Flanders Belgium

K. Jegajeevagan, S. Sleutel, S. De Neve

Department of Soil Management, Ghent University, Coupure 653, Gent, Belgium

Email: Pkjesi@yahoo.co.uk; Steven.Sleutel@UGent.be; Stefaan.DeNeve@UGent.be;
tel. +32 9 2646061; fax +32 9 2646247

In Flanders, Belgium, intensive field vegetable production is often accompanied with excessive use of organic fertilizers and high soil N mineralization rates and consequently high mineral N levels. Predictors for nitrogen mineralization were investigated for vegetable growing soils in Flanders, covering three crop rotation groups: arable vegetable, alternating arable vegetable, and strictly vegetable production from twenty different fields. Soils were aerobically incubated at an average temperature of 20°C over a 14-week period. Microbial biomass C (MBC) beta-glucosidase and dehydrogenase enzymes activity were measured at the end of 4th and 14th week of incubation. Soil organic matter quality was further investigated by a physico chemical fractionation procedure that firstly separates sand ($>53\mu\text{m}$) from silt+clay ($<53\mu\text{m}$). The silt+clay fractions are then chemically fractionated into 6% NaOCl-oxidation resistant N and OC, [10% HF extractable (mineral bound) N and OC (MN and MOC)] and 10% HF resistant (recalcitrant) N and OC (RN and ROC).

The initial total N contents of the different fields range from 0.55 to 1.62 g N kg⁻¹ with C:N ratios between 9 and 14. Soil N mineralization (72.4 – 175 kg N ha⁻¹ year⁻¹ at 20cm depth layer) was high in all studied soils and no significant differences were observed among the different cropping groups. However, the relative N mineralization (% of soil N year⁻¹) was significantly ($P<0.05$) higher in the arable vegetable cropping group ($4.08 \pm 1.02 \%$) than in the strictly vegetable cropped soils ($2.6 \pm 0.8 \%$). This was unexpected, given the common application of organic fertilizers on the strictly vegetable cropped fields. Since both SOC and N contents and C:N ratios did not correlate to N mineralization. Other factors such as SOM quality may explain the variation in observed N mineralization.

The physico- chemical fractionation procedure delivered useful predictors for % N mineralization with a ($P<0.01$) positive correlation with NaOCl oxidisable N ($r = 0.645$) and the Sand OM C:N ratio ($r = 0.566$) and negative correlations ($P<0.05$) with the NaOCl resistant N ($r = -0.513$), whole soil C:N ratio ($r = -0.535$) and silt+clay C:N ratio ($r = -0.552$). The NaOCl oxidisable N, MN and MOC fractions were significantly ($P<0.01$) different between the strictly vegetable cropping group and the arable and alternating arable cropping groups.

The % N mineralization was positively ($P<0.01$) correlated with dehydrogenase activity ($\mu\text{g TPF g}^{-1}\text{dry soil 24 hour}$) at the 4th ($r = 0.598$) and 14th ($r = 0.605$) weeks of incubation. A stepwise linear regression between relative N mineralization (% of soil N year⁻¹) and the relative proportions of SOC and N of the isolated fractions (in % of N or SOC) along with their C:N ratios yielded following model: ($R^2 = 0.416$; $P<0.01$, $N = 20$).

Yearly % N Mineralization = $0.071 * \text{NaOCl Oxidisable (silt+clay)N} - 1.088$

In conclusion differences in NaOCl oxidisability and HF extractability of the silt+clay N appear to relate to differences in relative N mineralization between cropping groups. For the studied set of soils, oxidation by NaOCl seems to mimic biological degradation of organic N.