Geophysical Research Abstracts Vol. 13, EGU2011-2955, 2011 EGU General Assembly 2011 © Author(s) 2011

In-Situ Stress and Fault Reactivation Associate with LNG Injection in the Tienchanshan Gas Field, Fold-Thrust Belt of Western Taiwan

Jih-hao Hung (1) and Jong-chang Wu (2)

(1) Natinal Central University, Taiwan, Geophysics, Jhongli, Taiwan (jhhung@ncu.edu.tw), (2) Exploration and Production Research Institute, Chinese Petroleum Corporation, Taiwan

The Tiechanshan gas field located in the fold-thrust belt of western Taiwan was depleted and converted into underground storage of Liquid Natural Gas (LNG) decades ago. Recently, CO₂sequestration has been planned at shallower depths of the structure. In this study we intend to characterize the in-situ stresses from over 40 wells and assess the leakage potential through fault reactivation in response to pore-pressure increase as a result of LNG injection. Formation pore pressures (P_f), vertical stress (S_v), and minimum horizontal stress (S_{hmin}) were measured from repeated formation tests, density logs, and hydrofrac including leak-off tests and fluid injection, respectively. Formation pore pressures are hydrostatic above depths of 2 km, and increase with local gradients of 0.62 and 0.94 psi/ft above and below 3.2 km. Extremely high pore pressures ($\lambda p=0.8$) are observed at depth below 3.8 km. Lower than normal pressures (average 0.42psi/ft) are observed in the gas-bearing reservoir of Talu A-sand. The gradient of S_{hmin} is ~ 0.77 psi/ft or equivalent to 0.74 of S_v (~1.04 psi/ft). Combined the structure contour map of A-sand top with measured S_{hmin} and S_v , stress state in the Tiechanshan field is a predominantly strike-slip stress regime $(S_{Hmax} > S_V > S_{hmin})$. Without extended leak-off tests and images of borehole wall, the upper-bound values of maximum horizontal stress (S_{Hmax}) constrained by frictional limits and coefficient of friction (μ =0.6) is about 1.21 psi/ft. Caliper logs from two wells show that borehole breakouts is oriented $\sim 28^{\circ}$ N, or maximum horizontal stress being 118°N, which is sub-parallel to far-filed plate-convergence direction. Geomechanical analyses on the reactivation of pre-existing faults at the depths of LNG reservoir sand indicate that all faults are relatively stable. Sensitivity analyses of affecting parameters indicate even the pessimistic risk scenario would require \sim 5.9 Mpa excess pore pressure to cause the optimal oriented F1 fault to reactivate. This corresponds to LNG column height of \sim 760 m (density= \sim 790 kg/m³), whereas the structure closure of the A-sand does not exceed 400 m. Therefore, LNG injection will unlikely to compromise the F1 fault stability.