

A Hidden Markov Model Perspective on Regimes in Atmospheric Flows

Christian Franzke

British Antarctic Survey, Science Programmes, Cambridge, United Kingdom (chan1@bas.ac.uk)

A controversial topic in the recent climate modeling literature is the fashion in which persistent circulation regimes in the atmosphere occur despite nearly Gaussian statistics of the large-scale planetary waves. In my presentation I will introduce a hierarchy of circulation models and examine their regime behavior through hidden Markov model (HMM) analysis of the time series of suitable low-frequency planetary waves. This analysis elucidates how statistically significant regime transitions occur despite nearly Gaussian behavior in the associated probability distribution function and without a significant role for the low-order truncated nonlinear dynamics alone. I will show that in a barotropic model the turbulent backscatter onto a three-dimensional subspace of low-frequency modes is responsible for these effects and not fixed points of the corresponding truncated low-order system. Furthermore, I will discuss the predictability of regime transitions and the interannual variability of the frequency of occurrence of circulation regimes in reanalysis data.